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Motivation and Purpose Simulation Model, Features and Input Parameters
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. Input Parameter: Project lifetime: 20yr, WACC: 11%, Load demand
Load Demand i (Mean: 900kW, Peak: 1600kW), Capex (Diesel: 0€, PV: 1800€/kWp,
minute simulation tool of hybrid mini-grids. - Wind: 2000€/kW, Battery: 400€/kWh), Opex (Diesel: 350€/kW,
= Including detailed genset, battery and ﬂ et PVIFWING: 3% of Capexlyr, Battery: 1,5% of Capex/yr), Battery Data
system operation and stability models. Renewable Energy Sources Storage (C-Rate: 1/6, Cycles @ 80% DOD: 5500).
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No minimal runtime criteria lead to frequent on- and off-switiching of diesel gensets. Simple operation strategies do not allow storage of diesel power generated excess energy
= Engine starts are reduced by minimal runtimes, diesel consumption slightly increases. = New dispatch enables communication between battery and diesel genset, which saves diesel fuel.
Diesel starts cause additional costs due to maintenance efforts. —> The higher the share of renewables the higher is the importance of such dispatch strategies.
—> Additional costs for each start are implemented and increase total costs.
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Spinning reserve constraints (eg. 10% of current load has to be provided by rotating mass or high power  High power batteries are able to store excess energy AND provide stability services.

batteries) have to be included to ensure system stability. —> Battery capacities are dramatically increased when spinning reserve is required as it is more cost
—> Spinning reserve increases diesel consumption, as diesel engines have to run even in times of high effective than running diesel gensets.
renewable penetration. = If the battery Is unable to provide spinning reserve, less renewables are installed and the overall
= Optimized system configurations are adopted due to spinning reserve criteria (cf. Fig. 5) diesel consumption increases (cf. Fig. 4).
Example: Power Flows Conclusion
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