

Electrification planning with focus on hybrid mini-grids

A comprehensive modelling approach for the Global South

10th IRES Conference

16.03.2016

Presenter: <u>Alexander Wanitschke</u>

Authors: Catherina Cader, Philipp Blechinger, Paul Bertheau

The Reiner Lemoine Institut (RLI)

Overview

- Not-for-profit research institute
- 100 % subsidiary of Reiner Lemoine-Foundation (RLS)
- Established 2010 in Berlin
- Managing Director: Dr. Kathrin Goldammer
- Member of: ARE, eurosolar, BNE, dena, EEA

Reiner Lemoine Founder of Reiner Lemoine-Foundation

- Motivation for electrification modelling
- Tool comparison
- Presentation RLI approach
- Conclusion

Rural electrification - Map

Cader, C. et al. (2015) Global cost advantages of autonomous solarbattery-diesel systems compared to diesel-only systems. Energy for Sustainable Development, 2015.

4 | Electrification planning with focus on hybrid mini-grids | philipp.blechinger@rl-institut.de

Rural electrification - challenges

- Currently, 1.4 billion people have no access to sustainable energy
- Different electrification options exist
- Challenge of assessing the least-cost electrification option for non-electrified areas
 - Dynamic modelling and simulation tools are needed

- Motivation for electrification modelling
- Tool comparison
- Presentation RLI approach
- Conclusion

Tool comparison

Tools	HOMER Energy	Network Planner	GEOSIM
General criteria			
Geospatial planning	no	yes	yes
Energy system modelling	yes	no – only static analysis	yes - cost-benefits optimisation
Technology criteria			
Load projections	yes – loads are created based on input, also deferrable loads are possible	no - load needs to be provided	yes – detailed projection builds on different user classes and surveys
Hybrid mini-grid	yes	no, only diesel based mini-grids	yes – but no solar mini- grid
Stand-alone system	no	yes – solar home system	yes - solar home system
Grid extension modelling	no – only calculation of breakeven grid extension distance	yes - but no topographic details are considered	yes – but no topographic details are considered

7 | Electrification planning with focus on hybrid mini-grids | philipp.blechinger@rl-institut.de

- Motivation for electrification modelling
- Tool comparison
- Presentation RLI approach
- Conclusion

RLI electrification modelling approach

9 | Electrification planning with focus on hybrid mini-grids | philipp.blechinger@rl-institut.de

Dynamic electrification modelling - Showcase

• Electrification modelling along the example of Plateau State

Nigerian Energy Support Programme (NESP) – Component III: Rural Electrification

Rural electrification planning

- GIS analyses
- Evaluation of on- and off-grid supply options
- Local capacity development

Map of Nigeria

Map of Nigeria - Plateau zoom

Step 1a: Identification of consumer cluster - population

Step 1a: Identification of consumer cluster - location

Step 1b: Assessment of status of electrification

Step 2: Night light imageries

Step 2: Grid data

Grid-connection indicates access to electricity.

Step 2: Final identification of status of electrification

18 | Electrification planning with focus on hybrid mini-grids | philipp.blechinger@rl-institut.de

Step 2: Non-electrified clusters

Step 3: Demand analysis for each non-electrified cluster

Step 3: Demand analysis - Zoom

For each non-electrified cluster an individual demand projection is performed.

Step 3: Demand analysis - Input

Step 3: Demand analysis

Socio-economic and infrastructural data feed into automatized load projection model.

Step 3: Demand analysis – Household loads

Socio-economic and infrastructural data feed into automatized load projection model.

- High evening peak
- Mixture of different household types

Step 3: Demand analysis – Commercial loads

Socio-economic and infrastructural data feed into automatized load projection model.

- Small shops and enterprises
- Main load during daytime and evening

Step 3: Demand analysis – Social loads

Socio-economic and infrastructural data feed into automatized load projection model.

- Schools, health station and community buildings
- Main load before noon and during the day

Step 3: Demand analysis – Productive loads

Socio-economic and infrastructural data feed into automatized load projection model.

- Mills, car shops and welders
- Main load during the day

Step 3: Demand analysis – Dynamic extrapolation

Step 4: Least-cost analysis – Input data: load

Step 4: Investment plan

Conclusion

- Comprehensive electrification modelling is needed to accelerate global access to energy.
- Many different tools exist with strenghts and weaknesses.
- RLI provides an approach based on GIS and energy system modelling.
- Tools are needed to underline the value of decentralized solutions compared to grid extension.
- Tools are needed to properly simulate hybrid mini-grids and show the value of storage options (cf. rural load curve).

Thank you for your attention!

GET IN TOUCH WITH US FOR

- Research cooperations
- Collaborative project applications
- Industry partnerships

Tel: +49 (0)30 5304 2012 E-Mail: philipp.blechinger(at)rl-institut.de Web: http://www.rl-institut.de

