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Abstract

In this thesis an open source model for generating wind feed-in time series called

Windpowerlib is implemented in Python and validated with measured feed-in time se-

ries. A basic version of the Windpowerlib that was developed at the Reiner Lemoine

Institute serves as basis of this work. Functionalities like wind speed height correc-

tions, density and power output calculations, power curve smoothing, aggregated

power curves and functionalities for the consideration of wake losses are presented,

implemented and their effect on simulation results evaluated. The validation is

carried out with measured feed-in time series of wind parks in Schleswig-Holstein

(coastal region) and Brandenburg (inland region) in Germany for the years 2015 and

2016. Moreover, the influence of weather data on feed-in time series simulations is

examined by using two different weather data sets. MERRA-2 data provided by the

NASA is compared with open FRED weather data that was especially created for

energy systems simulations.

Wind farm feed-in can be simulated with a deviation of 4.7 % (inland) and 3.4 %

(coastal region) from the measured annual energy output (overestimation) by the

Windpowerlib when using open FRED weather data. For MERRA-2 data the devi-

ations are about ten percentage points higher in Schleswig-Holstein (coastal region)

and about 26 percentage points higher in Brandenburg (inland region). All gen-

erated time series attain strong correlations with the measured time series with

Pearson correlation coefficients of about 0.7 to 0.9 while MERRA-2 data reaches

slightly higher correlations compared to open FRED data.
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Kurzzusammenfassung

In dieser Arbeit wird das Open Source Modell Windpowerlib zur Generierung

von Windeinspeisezeitreihen in Python implementiert und mit gemessenen Ein-

speisezeitreihen validiert. Eine frühere Implementierung der Windpowerlib, welche

am Reiner Lemoine Institut entwickelt wurde, dient als Grundlage für diese Arbeit.

Es werden Funktionen zur Höhenkorrektur von Windgeschwindigkeiten, Berechnung

von Dichte und Leistungsabgabe, Glättung von Leistungskurven, Berechnung ag-

gregierter Leistungskurven und Berücksichtigung von Abschattungseffekten disku-

tiert, implementiert und deren Effekte auf die Simulationsergebnisse ausgewertet.

Die Validierung erfolgt mit Hilfe von gemessenen Einspeisezeitreihen von Wind-

parks in Schleswig-Holstein (Küste) und Brandenburg (Inland) für die Jahre 2015

und 2016. Des Weiteren wird der Einfluss von Wetterdaten auf die Simulationen von

Einspeisezeitreihen untersucht, wofür zwei verschiedene Wetterdatensätze verwendet

werden. Dabei wird der MERRA-2 Datensatz der NASA mit dem open FRED-

Datensatz, der speziell zur Nutzung in Energiesystemsimulationen erstellt wurde,

verglichen.

Mit der Windpowerlib kann der Ertrag eines Windparks mit einer Überschätzung

der gemessenen Jahresenergiemenge von 4.7 % (Brandenburg) und 3.4 % (Schleswig-

Holstein) simuliert werden, wenn der open FRED-Datensatz verwendet wird. Diese

Abweichungen vom Jahresenergieertrag fallen für MERRA-2-Daten für den Wind-

park in Schleswig-Holstein um circa zehn Prozentpunkte und für den Windpark

in Brandenburg um circa 26 Prozentpunkte höher aus. Alle erzeugten Zeitreihen

weisen mit Pearson Korrelationskoeffizienten von circa 0.7 bis 0.9 hohe Korrelatio-

nen bezüglich der gemessenen Zeitreihen auf, wobei mit MERRA-2-Daten generierte

Zeitreihen etwas höhere Korrelationen besitzen als diejenigen, die mit open FRED-

Daten erzeugt wurden.
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Chapter

1
Introduction

1.1 Motivation

Renewable energy sources play a key role in the combat against climate change.

The necessity for the transition of energy systems from fossil-fueled power plants to

renewable energy power plants and for action against climate change is established in

the Sustainable Development Goals of the United Nations [2017c]. Goal 7 is striving

to ”ensure universal access to affordable, reliable and modern energy services”, where

the ”renewable energy share in the total final energy consumption” needs to be

”increase[d] substantially” and the urgency for taking ”action to combat climate

change and its impacts” is anchored in goal 13 [United Nations, 2017a,b].

Furthermore, the Renewable Energy Directive 2009/28/EC (RED) of the European

Parliament and Council determines the share of renewable energy in the gross final

energy consumption in the EU to reach at least 20 % in the year 2020. The member

states committed themselves to national goals which stretch from 10 % to 49 %

where Germany is obliged to attain at least 18 % of renewable energy share. In 2014

the European Council agreed on a percentage of at least 27 % in the EU until the

year 2030 [Bundesministerium für Wirtschaft und Energie, 2017, p. 33].

Among the different conversion technologies for renewables, such as wind, sunlight,

biomass, natural heat of earth and water, wind power plants are one of the most

applied technologies in Europe. According to WindEurope [2018, p. 7] an amount

of 15.638 GW of wind power was installed in Europe in 2017 which is more than the

newly installed capacity of any other energy conversion technology in the same year.

Moreover, WindEurope [2018, p. 6] shows that since 2016 wind power has been

the second largest power source in Europe concerning the total power generation

capacity installed.

- 1 -



Chapter 1 Introduction

Also in Germany wind energy plays a crucial role in power generation. Figure 1.1

shows the progress of the gross electricity generation from renewables in Germany

during the time period from 1990 to 2017 (biomass not included). Electricity gener-

ation from hydro power shows annual variations around a comparatively high level

of 20 000 GWh since the 1990s. Geothermal electricity generation only shows a

minor increase from 0 GWh (1990 - 2003) to 155 GWh in 2017 which can not be

seen in this figure due to its scale. The electricity generation from solar and wind

energy has been increasing rapidly of which the rise of onshore wind energy starts

first followed by photovoltaic and offshore wind energy. In 2017 the gross electric-

ity generation from onshore wind power plants was more than twice as high as the

one from photovoltaic. This graphic and the earlier mentioned figures of installed

capacity published by WindEurope [2018] show that Europe is aiming to fulfill the

goals of the United Nations and the RED mentioned above and that wind energy

plays a key role in this process.
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Figure 1.1: Gross electricity generation from renewables in Germany from 1990 to 2017. Data
from AGEE-Stat [2018, p. 6]. Hydro power comprises storage- and run-of-the-river power plants
and pumped storage power plants with natural inflow. Biomass is not considered.

Compared to fossil energy carriers such as coal, natural gas and oil, some renewables

such as solar and wind energy, are fluctuating and differ significantly from location to

location. This poses new demands on electrical grids. For a reliable electricity supply

long- and short-term energy storages need to be installed and grid extensions such

as in Germany a north-south connection with higher capacity have to be considered.
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1.2 Preceding work as basis of this thesis

For the realization of these demands it is necessary to use modelling tools that

can for instance optimize the implementation of storages and grid-extensions. Due

to the volatile nature of the most installed renewables and the increasing share of

renewables in the European electricity grid these optimization tools need models (or

components) that simulate the feed-in of renewables.

1.2 Preceding work as basis of this thesis

This thesis was written at the Reiner Lemoine Institute (RLI) that mainly uses the

Open Energy Modelling Framework (oemof)1 for energy systems simulations, which

was developed in a partnership between the Center for Sustainable Energy Systems

(ZNES) Flensburg, the RLI and the Otto-von-Guericke-University of Magdeburg

(OVGU) [Oemof Developer Group]. Oemof is written in Python and provides its

users with a toolbox for energy system modelling. It obtains feed-in time series

required for the simulations from standalone applications like feed-in of photovoltaic

from the pvlib2, feed-in of wind power plants from the Windpowerlib3 and feed-in

of hydro power plants from the hydrolib4. As wind power plants have a high share

in electricity generation in both Germany and Europe and as the pvlib is already

well-developed this thesis is dedicated to the further development of the wind feed-in

time series generating Windpowerlib.

Version 0.0.4 (v0.0.4) of the Windpowerlib builds the basis of this thesis. It consists

of a module basicmodel which provides a class SimpleWindTurbine for calculat-

ing the power output (feed-in) of a wind turbine and of a basic_example module

showing the basic usage of the Windpowerlib. Moreover, power coefficient curves as

well as example weather data is provided. The SimpleWindTurbine class includes

functions for reading turbine data and one function each for the calculation of wind

speed (logarithmic wind profile) and density (barometric height equation) at hub

height of the wind turbine. The source code of Windpowerlib v0.0.4 is hosted on

the software development platform Github5.

This basic version of the Windpowerlib was created to be able to start calculations

with oemof and to provide a framework for the development of an extensive library.

It contains functions which are sufficient for basic feed-in calculations of a single wind

1https://github.com/oemof
2https://github.com/pvlib/pvlib-python
3https://github.com/wind-python/windpowerlib
4https://github.com/hydro-python/hydropowerlib/tree/dev
5https://github.com/wind-python/windpowerlib/tree/v0.0.4
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Chapter 1 Introduction

turbine. However, as the Windpowerlib is aimed to become an extensive and flexibly

applicable library it should provide various calculation options. Furthermore, the

calculation of a single wind turbine’s feed-in is not sufficient for all applications. For

instance, for power grid simulations or an estimation of required energy storage ca-

pacity it is necessary to generate feed-in time series of wind farms or larger areas. As

wind turbines influence each other’s power output when standing close to each other

the simple aggregation of single wind turbine power output is not detailed enough

for all applications. The Windpowerlib is supposed to rather serve for simulations

of larger areas than single wind turbines. Moreover, for the users of models like

the Windpowerlib it is very important to get an idea of over- or underestimation

made by the model, as well as of how it reacts on different qualities of input data.

Thus, this thesis is focusing on the implementation of additional functions into the

Windpowerlib and its profound validation with measured feed-in time series. The

aim of this thesis is further described in the Section 1.4.

1.3 Open source modelling and open data

As remarked in Section 1.1 energy systems simulations require modelling tools that

can simulate the feed-in time series of renewables. There exists a multitude of energy

system and power generation models. However, a large part is commercial which

means firstly that they are not available to all possible users and secondly that the

source code can not be viewed nor adapted to the needs of the respective application.

In many commercial softwares it is not comprehensible which assumptions are made

and which models are used for the calculations. This leads to difficulties in verifying

and fully understanding research results [Reiner Lemoine Institut, a].

To address this problem the Open Energy Modelling (Openmod) Initiative6 was

founded in 2014 by researchers from different institutions in Europe [Neon Neue

Energieökonomik GmbH]. The Openmod strives for ”open[ing] the whole energy

modelling process by utilizing open data and open source code” and ”promotes open

energy modelling in Europe”. ”Open” means to publish source code and data and

to make it freely available, usable and adjustable while it should be published under

an open software license7. According to the Openmod Initiative ”more openness in

6http://openmod-initiative.org/
7Open source and copyleft licenses are for instance published by the Free Software Foundation

[2018].
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1.4 Aim and structure of the thesis

energy modelling will increase transparency and credibility, reduce wasteful double-

work and improve overall quality” [Openmod Initiative].

As the Windpowerlib is an open source library it is freely available on Github where

all developers can contribute to the project while responsible persons at the RLI have

to accept changes before they are included into the code. The Windpowerlib is sup-

posed to become an open source community project following the example of oemof,

to which developers of several institutions have committed. So far no developers

outside the RLI have contributed to the Windpowerlib, however, employees of the

RLI did apply changes which comprise mainly adding of power curves, implementing

the usage of a special data structure (MultiIndex Data Frames) and adjustments in

the documentation (docstrings). Although the main developer of the Windpowerlib

from v0.0.4 onwards is the author of this thesis all other authors of changes are

documented on Github which gives transparency about the work done in this thesis.

1.4 Aim and structure of the thesis

With the Windpowerlib v0.0.4 a basic framework for immediate use and further de-

velopment was created as described in Section 1.2. The limitations of Windpowerlib

v.0.0.4 are the following:

• Power output calculations only possible by power coefficient curve but not by

power curve8

• Only one available function for each wind speed and density calculations

• Modelling of wind farms or rougher spatial resolutions is missing

• No validation has been made

The aim of this thesis is to implement functions that will abolish the first three

limitations listed above and to carry out a validation with measured feed-in time

series. Moreover, as the library will grow it is intended to realize a clear module

structure. Furthermore, this thesis is part of the open FRED (Open feed-in time se-

ries based on a Renewable Energy Database) project at the Reiner Lemoine Institute

which strives for the creation and the publication of consistent standard data that

”match[es] the needs of simulation models for fluctuating renewables” and aims at

connecting them to open source simulation models [Reiner Lemoine Institut, b]. As

8for an explanation of the terminology see Section 2.2
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the Windpowerlib is strongly connected to oemof (see Section 1.2), it is supposed to

follow the same principles which includes the following points defined by the Oemof

Developer Group:

1. Free of charge

2. Open source

3. Transparency

4. Clear documentation

5. Flexibility

The first three requirements are already met by an open source license and the

publication of the source code on Github. Moreover, a clear documentation of the

implementations during this thesis will be included into the source code. The fifth

requirement, flexibility, will be met by introducing a modular structure which al-

lows a flexible usage of single functions and classes. In addition to that, this work

aims on implementing a default model, similar to the modelchain of the pvlib (see

pvlib python [2018]), which is supposed to enable the users to understand and work

with the library quickly. As the Windpowerlib will be used in scientific research a

high academic standard will be ensured by inserting references for every function

implemented.

As mentioned before, this thesis also focuses on validating the Windpowerlib. This

implies a comparison of different calculation methods implemented in the library as

well as the validation of calculated feed-in time series with measured feed-in data.

Furthermore, to examine the influence of input data simulation results using two

weather data sets that differ in spatial and temporal resolution are planned to be

compared.

This thesis is divided into 8 parts. Chapter 2 provides an introduction into wind

feed-in time series simulations and describes various approaches in the literature.

Chapter 3 presents the data basis for the simulations in this thesis. The model

implementation is depicted in Chapter 4 as well as the simulation cases for the

validation. Chapter 5 shows the results of these simulations which are discussed in

Chapter 6. A conclusion is given in Chapter 7 which is followed by an outlook in

Chapter 8.
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Chapter

2
Wind feed-in time series simulation

Wind is a highly fluctuating renewable energy and therefore simulation tools gener-

ating wind feed-in time series became inevitable for energy systems simulations. In

this chapter fundamental equations for wind feed-in time series are presented and

various approaches for different modelling problems are described.

2.1 Height correction and conversion of weather data

Weather data is usually available for a restricted amount of heights above ground.

However, for wind feed-in time series calculations weather data is needed at hub

height of the examined wind turbines. Thus, weather data has to undergo height

corrections.

2.1.1 Wind speed height corrections

The increase of wind speed with height depends on different factors among which are

roughness of the landscape, ground structure and temperature profile. For a neutral

stratification, flat ground and a uniform roughness length within the boundary layer

the vertical wind speed profile can be described by the logarithmic wind profile (log

law) [Gasch and Twele, 2005, p. 128, 132]. Equation (2.1) shows the calculation of

the wind speed at hub height vwind,hub with the log law from wind speed data vwind,data

at another height hdata via the roughness length z0 [Gasch and Twele, 2005, p. 131;

Hau, 2014, p. 557].

vwind,hub = vwind,data ·
ln
(
hhub
z0

)
ln
(
hdata
z0

) (2.1)
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Quaschning [2011, p. 278] adds a variable d to this function which includes the

offset of the boundary layer due to obstacles in the surroundings. This offset d is

estimated by 70 % of the obstacle height. The so altered function in Equation (2.2)

results in Equation (2.1) if d = 0.

vwind,hub = vwind,data ·
ln
(
hhub−d
z0

)
ln
(
hdata−d

z0

) (2.2)

Another commonly used option for wind speed height corrections is the Hellman

equation shown in Equation (2.3) which assumes that the wind profile follows a

power law. Here the wind speed at hub height is calculated by using the Hellman

exponent α [Quaschning, 2011, p. 279; Hau, 2014, p. 557; Sharp, 2015, p. 82 f.].

vwind,hub = vwind,data ·
(
hhub
hdata

)α
(2.3)

The Hellman exponent can adopt values between 0.1 and 0.6. In many studies a value

of 1/7 is assumed for onshore wind turbines [Sharp, 2015, p. 83]. Equation (2.4)

shows a way to estimate α via hhub and z0 [Hau, 2014, p. 559; Quaschning, 2011,

p. 279].

α = 1
ln
(
hhub
z0

) (2.4)

Sharp [2015, p. 83 f.] presents findings in the literature concerning the performance

of the logarithmic wind profile and the Hellman equation. Among other things he

states that Elkinton, Rogers, and McGowan [2006] found out that these equations

”perform equivalently with different methods working better depending on the site”.

Moreover, they showed that the Hellman exponent is time-dependent and that the

use of a non-time-dependent Hellman exponent can result in great errors in hourly

resolution, however, performs well for a whole year. Hau [2014, p. 559] states that

both functions usually underestimate the wind speeds at hub heights higher than

100 m while these underestimations are stronger with the Hellman equation.

2.1.2 Density calculations

The air density at hub height of a wind turbine is necessary in wind feed-in simu-

lations if, for instance, a density correction is applied to power curves as explained

later in Section 2.2.
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One way to calculate the density at hub height is the barometric height equation

which is displayed in Equation (2.5) [Hau, 2014, p. 610; Gasch and Twele, 2005,

p. 150]. The density at hub height %hub is calulated using temperature Thub and

pressure phub at hub height as well as the standard temperature T0 = 288.15 K,

pressure p0 = 1013.25 hPa and density %0 = 1.225 kg/m3 [Deutscher Wetterdienst,

b].

%hub = phub ·
%0T0

p0Thub
(2.5)

The pressure given at any height can be corrected to hub height by Equation (2.6)

assuming a linear gradient of -1/8 hPa/m [Deutscher Wetterdienst, a].

phub =
(
pdata
100 − (hhub − hp,data) ·

1
8

hPa

m

)
· 100 (2.6)

The change of temperature with height is defined in the standard norm atmosphere

which is specified in a document of Deutscher Wetterdienst [b]. It states that tem-

perature decreases with a linear gradient of 6.5 K/km with height. This is expressed

in Equation (2.7) where the temperature Thub at hub height of a wind turbine is

calculated by applying the linear gradient on the temperature Tdata at height hT,data

of a weather data set.

Thub = Tdata − 0.0065 · (hhub − hT,data) (2.7)

An alternative option for the calculation of air density is the ideal gas equation

[Ahrendts and Kabelac, 2014, p. 23]. To calculate the density at hub height this

formula can be converted to Equation (2.8), where Rs = 8.314 J/(mol · K) is the

specific gas constant. This formula is used by Knorr [2016, p. 96 f.] and Biank

[2014].

%hub = phub
RsThub

(2.8)

2.2 Power output calculations

The power output of a wind turbine can be determined via its power curve which

describes the relationship between wind speed and power output. Alternatively it

can be calculated by using the power coefficient (Cp-) curve of the wind turbine. In

this case the power output P at wind speed vwind is defined by Equation (2.9), where

drotor is the rotor diameter of the wind turbine, %hub the density at hub height and
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cp the power coefficient of the Cp-curve [Hau, 2014, p. 106, modified; Quaschning,

2011, p. 282 modified].

P (vwind) = 1
8 · %hub · d

2
rotor · π · v3

wind · cp (vwind) (2.9)

The standard for measuring power curves is regulated in IEC 61400-12. This norm

defines how power curves are corrected from a site specific air density to standard

air density. To correct a standard power curve to be valid at site specific air den-

sity this proceeding can be applied reversely. According to Knorr [2016, p. 97] and

Svenningsen [2010] there exist multiple equations depending on the rotor power regu-

lation. For pitch regulated wind turbines the standard wind speeds vstd of the power

curve are replaced by site specific wind speeds vsite calculated by Equation (2.10)

where %site is the site specific air density and %0 the standard air density.

vsite = vstd ·
(
%0

%site

) 1
3

(2.10)

In contrast, the density corrected power curve of a stall regulated wind turbine is

achieved by replacing the standard power output values Pstd of the power curve with

the site specific power output values Psite calculated by Equation (2.11).

Psite(v) = Pstd(v) · %site
%0

(2.11)

Svenningsen [2010] explains that the density correction for pitch regulated wind tur-

bines can result in up to 5 % overestimation of the annual energy output. Therefore,

he proposes an altered method by which the errors ”generally reduce to <1 %”. In

this method the ratio in Equation (2.10) is taken to the power of a parameter p

which depends on vstd. This can be seen in Equation (2.12) while Equation (2.13)

shows how p depends on vstd.

vsite = vstd ·
(
%0

%site

)p(vstd)

(2.12)

p =



1
3 vstd ≤ 7.5 m/s

1
15 · vstd −

1
6 7.5 m/s < vstd < 12.5 m/s

2
3 ≥ 12.5 m/s

(2.13)
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2.3 Wake losses in wind farms

2.3 Wake losses in wind farms

When wind turbines are grouped to wind farms they influence each other. As a wind

turbine transforms a part of the kinematic energy of the wind to electric energy the

wind speed behind the rotor is reduced. Thus, a wind turbine standing in the second

row of a wind farm concerning the wind direction is shadowed by wind turbines of

the first row and, therefore, produces less power. These wake losses have to be

considered when calculating wind feed-in time series of wind farms.

2.3.1 Definition of wind farms and clusters

As Knorr [2016, p. 22] states wind farms are often defined by ownership. However,

from a computational modelling point of view wind turbines group to wind farms

by the distance between each other. According to Knorr [2016] a wind farm has to

be seen as a collection of wind turbines that are in sufficient distance to other wind

turbines to generate negligible wake losses on them. He further states that this case

normally occurs from a distance of ten rotor diameters. This is confirmed by Hau

[2014, p. 784 ff.] who writes that a minimum wind turbine distance of eight to ten

rotor diameters in the prevailing wind direction and of three to five rotor diameters

vertical to the prevailing wind direction results in an acceptable wind farm layout.

In his work Knorr [2016] groups wind turbines depending on their distance to other

wind turbines and calls the result clusters (see Section 2.3.3). This work will use the

term wind farms when refering to Knorr’s clusters while a cluster or wind turbine

cluster comprises wind turbines belonging to one weather data point. In simulations

each wind turbine is assigned to the weather data point closest to its location. This

means a cluster can include several wind farms as well as single wind turbines. This

is useful as in simulation models usually to all wind farms and wind turbines the

same wind speed of the common weather data point is applied. Section 2.5 explaines

how an aggregated power curve representing all wind turbines within a cluster on

which this wind speed data is applied can be calculated.

2.3.2 Wake models

In the literature a large number of models for considering wake losses can be found.

Renkema [2007, p. 2] validates wake models available in WindPRO among other

models ”that can be used in a[n] optimization tool”. He gives an overview of these
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wake models and categorizes them into kinematic (explicit) wake models and field

(implicit) models. Kinematic models determine the wind speed deficit behind a wind

turbine whereas field models calculate a complete flow field within a wind farm. The

Jensen model [Jensen, 1983], which is one of the oldest models and is widely used

in the literature, the Larsen model and the Frandsen model [Frandsen, Barthelmie,

Pryor, Rathmann, Larsen, Højstrup, and Thøgersen, 2006] count to the kinematic

models. Often mentioned in the literature is the model by Ainslie [Ainslie, 1988]

which is a two-dimensional field model [Renkema, 2007, p. 5 ff.].

These wake models have one thing in common. When applying them to wind feed-in

time series simulations the layouts of the examined wind farms have to be known.

When simulating large areas handling this is time intensive and requires extensive

data sources as the exact locations of all wind turbines have to be available. However,

this data is not freely available for all countries and areas. Thus, non of these models

will be implemented into the model in this thesis and, therefore, they will not be

described further. More detailed information on wake models can for instance be

found in the works of Knorr [2016], Renkema [2007], Shakoor, Hassan, Raheem, and

Rasheed [2015] and Barthelmie, Folkerts, Larsen, Rados, Pryor, Frandsen, Lange,

and Schepers [2005].

2.3.3 Wind farm efficiency and wind efficiency curves

As explained in Section 2.3.2 wake models require the layouts of wind farms for

which wake losses are aimed to be modeled. If the layouts are not known, which

will supposedly be the case for Windpowerlib applications, estimated wake losses

in form of a wind farm efficiency reducing the power can be used instead. A wind

farm efficiency η can be understood as shown in Equation (2.14) as the ratio of the

actual power output of the wind farm Pwind farm to the hypothetical power output of

this wind farm when every wind turbine would deliver a feed-in not influenced by

wake losses. The latter is expressed by the sum over the power output of the single

undisturbed wind turbines Pi,single in Equation (2.14).

η = Pwind farm∑
i
Pi,single

(2.14)

One way of applying this is to use a constant wind farm efficiency. However,

Barthelmie, Hansen, and Pryor [2013, p. 1017] found out that the ”largest changes

in wind farm efficiency are those associated with changing wind speeds” when they
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analyzed ”the influence of wind speed, wind direction/turbine spacing, TI [(turbu-

lence intensity)], and atmospheric stability on wind farm efficiency” using SCADA

data from two large wind farms. Therefore, it would be more convenient to use an

efficiency curve that determines the efficiency of a wind farm dependent on wind

speed. Two studies are using efficiency curves reducing wind speeds instead of wind

farm efficiencies reducing power output, which is explained in the following.

In the ”dena-Netzstudie II” [Kohler, Agricola, and Seidl, 2010] and in the work of

Knorr [2016] wind efficiency curves are used to calculated wake losses in wind farms.

In contrast to a wind farm efficiency as shown in Equation (2.14), that depicts a

power loss, a wind efficiency determines the average reduction of wind speeds within

a wind farm induced by wake losses. The wind efficiency curves used and generated

in these two studies define the wind efficiency depending on the wind speed and are

applied on wind speeds from the weather data before power output calculations.

To attain these wind efficiency curves, at first, the ”dena-Netzstudie II” [Kohler

et al., 2010] and Knorr [2016] calculate so-called wind efficiency fields. A wind

efficiency field determines the wind efficiency depending on wind speed and wind

direction. The wind efficiency at one wind turbine of a wind farm ηWT is calculated

by Equation (2.15) by the relation between the wind speed vwind before interaction

with the wind farm and the wind speed vWT that arrives at the wind turbine.

ηWT(v, ω) = vwind(ω)
vWT(ω) (2.15)

The ”dena-Netzstudie II” [Kohler et al., 2010, p. 99 f.] determines wind efficiency

fields for 12 reference wind farms spread over Germany by using the Jensen Model in

the Farm Layout Program (FlaP), that was developed by the University of Oldenburg

for dimensioning and optimizing wind farms. Knorr [2016, p. 114 ff.] uses a model

that ”underlies trigonometric calculations that are often [...] summarized with the

terms ’Jensen-, Risø- or Ainslie-Modell’” for calculating the wind efficiency fields of

2364 wind farms. In both studies first the wind efficiency field of each turbine of

a wind farm is determined and then the average wind efficiency field of the whole

wind farm ηWF is calculated by averaging the fields of all turbines within the wind

farm. Thereby, a power weighted average, like shown in Equation (2.16), is applied

which gives the efficiency ηWT,i of turbines with a higher nominal power Pn,WT,i a

greater weight.

ηWF(v, ω) =
∑
i

ηWT,i(v, ω) · Pn,WT,i∑
i
Pn,WT,i

(2.16)
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In the next step wind efficiency curves ηWF(v) are derived from the wind efficiency

fields ηWF(v, ωi) by averaging over wind directions ωi while taking the frequency

h(ωi) of these wind directions into consideration (see Equation (2.17)). Knorr [2016,

p. 125] uses COSMO-DE data for this and applies hourly wind direction values at

73 meters above ground of the year 2012.

ηWF(v) =
∑
i

ηWF(v, ωi) · h(ωi) (2.17)

On the basis of these wind efficiency curves of 12 or respectively 2364 wind farms

in both studies a mean wind efficiency curve is calculated by averaging all wind

efficiency curves. Figure 2.1 illustrates the mean wind efficiency curves and extremely

deviating curves of single wind farms of both studies. The individual curves deviate

considerably from the mean curves which means that wind efficiency curves can

differ indeed for different wind farms. However, the ”dena-Netzstudie II” [Kohler

et al., 2010, p. 100] explains that the area and turbine number of the 12 reference

wind farms does not provide insight into the spatial distribution of the turbines.

Due to that they cannot assign individual wind efficiency curves to wind farms and,

therefore, use the mean wind efficiency curve for predicting the wind feed-in of 2020.
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Figure 2.1: Average and extremely deviating wind efficiency curves from the ”dena-Netzstudie II”
[Kohler et al., 2010, p. 101] and from the work of Knorr [2016, p. 124]
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Knorr [2016, p. 123 ff.] additionally suggests to generate wind efficiency curves by

a model equation using mirrored thrust efficiency curves of wind turbines. Equa-

tion (2.18) shows his model equation where ct is the thrust coefficient and f a scaling

factor. However, he detects no clear dependency of the factor f on the following

wind farm characteristics: number of turbines, wind farm area, maximum turbine

distance, standard distance.

mη,WF(vWF) = 1− f · ct(vWF) (2.18)

To distinguish between wind farm efficiency (curves) and wind efficiency curves in

this thesis wind farm efficiency curves, which depict the power reduction due to wake

losses, will be called power efficiency curves.

2.4 Spatial distribution of wind speeds

Wind is a fluctuating renewable energy and differs in space and time. In weather

data this can only be expressed up to a certain extent since its spatial and temporal

resolution is limited. Concerning the spatial resolution this leads to errors when

the feed-in of several wind turbines spread over an area is calculated. In simulation

models like the Windpowerlib each turbine is assigned to the closest weather data

point. This means that in these models all wind turbines within a certain area

(e.g. about 50 x 50 km in MERRA-2 data or 6 x 6 km in open FRED data, see

Section 3.1) encounter the same wind speed and, therefore, produce a power output

induced by this identical wind speed (or an identical power output if they are of

the same turbine type). In reality wind speed differs over the area. Thus, the wind

turbines produce a power output that is induced by different wind speeds (and is not

identical for identical turbine types). As Nørgaard and Holttinen [2000, p. 2] explain

this results in a smoothing of the single turbines’ power output fluctuations and leads

to the effect that simulated wind feed-in time series show higher fluctuations than

measured feed-in time series.

2.4.1 Smoothed power curve

To account for the spatial distribution of wind speeds within an area Nørgaard and

Holttinen [2000] assume that wind speed is distributed by a Gauss distribution over

space.
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Equation (2.19) shows the Gauss distribution where σ is the standard deviation and

µ the mean [Berendsen, 2011, p. 37].

f(x) = 1
σ
√

2π
exp

[
−(x− µ)2

2σ2

]
(2.19)

Figure 2.2 shows an example of the Gauss distribution with a σ of 1.2 m/s and a µ

of 0 m/s. The function variable x in this case was differed in steps of 0.1 m/s from

-7 m/s to 7 m/s. µ creates an offset which would move the graph to the left for

negative values and to the right for positive values. The Gauss function is not defined

for σ = 0 and becomes a normal distribution for µ = 0. Approaches for defining the

parameters σ and µ in a wind feed-in simulation are depicted in Section 2.4.2.
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Figure 2.2: Gauss distribution for a standard deviation of 1.2 m/s and an offset of 0 m/s [Nør-
gaard and Holttinen, 2000, p. 4, modified]

By applying the distribution of wind speeds from Equation (2.19) and Figure 2.2 to

a power curve a smoothed power curve as illustrated in Figure 2.3 is received.

As Nørgaard and Holttinen [2000, p. 2 f.] are aiming at creating a so-called multi-

turbine power curve they apply the distribution to a power curve representing all

turbines within one area. Equation (2.20) shows how they find the jth element of the

smoothed power curve Psmoothed, j. Pj+i is the (j+i)th element of the original power

curve and fi the probability of the spatial distribution in Figure 2.2. They state that
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Figure 2.3: Smoothed power curve of a Vestas V90 with the Gauss distribution of Figure 2.2

the sum in Equation (2.20) ”should as a minimum be done for a wind speed range

from -5 m/s to +5 m/s around the jth element in the power curve”.

Psmoothed, j =
∑
i

Pj+i ∗ fi (2.20)

This way of smoothing power curves is also used in the ”dena-Netzstudie II” [Kohler

et al., 2010] and in the dissertation of Knorr [2016]. In the latter Knorr [2016,

p. 106 ff.] explains the procedure of creating a smoothed power curve according

to Nørgaard and Holttinen [2000] in detail and makes suggestions for extensions.

Equation (2.21) shows a modified version of his interpretation of how to achieve the

values of a smoothed power curve Psmoothed for each wind speed vstd of the power

curve [Knorr, 2016, p. 106]. The sum is done for vi which are the wind speeds

around the power curve wind speed vstd for which Nørgaard and Holttinen [2000]

recommend to use a range from -5 m/s to +5 m/s (see above) and ∆vi is the interval

length between vi and vi+1. σ and µ are the parameters of the Gauss distribution in

Equation (2.19).

Psmoothed(vstd) =
∑
vi

∆vi · P (vi) ·
1

σ
√

2π
exp

[
−(vstd − vi − µ)2

2σ2

]
(2.21)
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Figure 2.3 shows the result of smoothing the power curve of a Vestas V90 wind

turbine with the Gauss distribution of Figure 2.2. It can be seen that the smoothed

power curve lies slightly above the original power curve for the first section between

0 m/s and the nominal speed. This effects occurs due to the rising slope of the

original power curve. Shortly before this slope starts to decrease the slope of the

smoothed power curve decreases, too, and the smoothed curve’s values lie below

the ones of the original curve. The smoothed power curve arrives at nominal power

after the nominal speed due to the lower power values before nominal wind speed

that are considered in the sum of Equation (2.21). From there the smoothed power

curve stays for some wind speeds at nominal power and lowers itself a great range

before the cut-out wind speed. This is due to the power values of 0 MW from higher

wind speeds that are included into the sum of Equation (2.21). For power curve

wind speeds higher than cut-out wind speed power values of wind speeds lower than

cut-out wind speed are included into the sum. Therefore, the smoothed power curve

does not fall to 0 MW at cut-out speed immediately.

The smoothing of feed-in fluctuations for larger aggregation levels can be evaluated

by the standard deviation or relative standard deviation (standard deviation divided

by average) of the time series as Nørgaard and Holttinen [2000, p. 2] do for two

areas. One of their examples is the power generation at the West coast in Finland

in 2001 where the relative standard deviation of the hourly feed-in time series of a

single wind turbine was 1.14, of three wind turbine gatherings containing eight wind

turbines in an area of ten kilometers 1.02 and of five sites within an area of 200 km

0.93.

2.4.2 Parameters of the Gauss distribution of smoothed power curves

The crucial part of using smoothed power curves in wind feed-in simulations is to

find a suitable way to describe the parameters of the Gauss distribution. This section

is a summary of the usage of these parameters in different studies.

Nørgaard and Holttinen [2000] and Staffell and Pfenninger [2005] use a standard

deviation that is dependent on the power curve wind speed. Nørgaard and Holttinen

[2000, p. 5] multiply the normalized standard deviation σn with the power curve wind

speed vstd as shown in Equation (2.22) to get σ for the Gauss distribution.

σ = vstd · σn (2.22)
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According to their findings the normalized standard deviation depends on the spatial

dimension of the area over which the examined wind turbines are spread and on

the turbulence intensity (TI). They provide a graphic which shows the normalized

standard deviation for an area dimension from 0 km to 300 km and a TI of 5 %, 10 %,

15 % and 20 %. However, they state that this is ”still to be further empiric[ally]

validated”, which is why this approach of getting the standard deviation is not

considered in this thesis. To attain µ they use an optimization by altering the value

until they get an identical accumulated annual production from the original and the

smoothed power curve concerning a Weibull distribution of wind speeds.

Staffell and Pfenninger [2005, p.11] use Equation (2.23) for which they determine

the parameters empirically.

σ = 0.6 + 0.2 · vstd (2.23)

In the ”dena-Netzstudie II” [Kohler et al., 2010] σ is determined independently from

the wind speed in an optimization in which the optimum is found when the sum of

the squared errors between the measured and simulated power output is minimal

(least squares method) [Kohler et al., 2010, p. 71]. Knorr [2016, p. 107 f., appendix

p. 4] optimizes σ in the same way, however, he states as well that Equation (2.22)

can be used. The therefore needed normalized standard deviation he interprets as

turbulence intensity, as it is a standard deviation normalized on an average wind

speed. He does not consider an offset adjustment and sets µ to 0 m/s. For an

estimation of the turbulence intensity TI at height h Knorr [2016, p. 88] gives the

following Equation (2.24) where z0 is the roughness length of the area.

TI ≈ 1
ln
(
h
z0

) (2.24)

2.5 Aggregated power curves

In energy systems simulations feed-in time series are usually calculated for different

sized areas. The extension of these areas can differ from village size up to whole

countries. The data basis of wind turbine’s locations and specifications is limited

for many countries. Therefore, it can be useful to utilize characteristic model power

curves that represent the power curves of a collection of wind turbines within an

area and are scaled to the installed power output. Even if a more detailed data basis

is available aggregated power curves can be practical to save computational time.

Furthermore, if power efficiency curves are used for modelling wake losses of a wind

farm, like introduced in Section 2.3.3, it is practical to apply them to a wind farm
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power curve or cluster power curve (see Section 2.3.1) instead of applying them to

every single wind turbines’ power curve. The same counts for power curve smoothing

(see Section 2.4.1).

2.5.1 Current research approaches

An approach for representative power curves can be found in the work of Nørgaard

and Holttinen [2000] who introduce a so-called multi-turbine power curve approach

to simulate feed-in time series of a wind turbine cluster with similar wind turbines.

The approach is limited to similar turbine types as only one power curve that is

supposed to represent all wind turbines within one area is used. They smooth the

representative power curve as explained in Section 2.4.1.

In the ”dena-Netzstudie II” Kohler et al. [2010] generate aggregated power curves for

offshore wind farms and onshore network nodes to estimate the wind feed-in time

series in the year 2020. The aggregated onshore power curves result from summing

up all power curves of wind turbines that are estimated to further be in operation

in 2020. For the remaining predicted installed power a model power curve that

was created earlier is scaled to this remaining installed power and is added to the

aggregated onshore power curves. In the following these aggregated power curves

are smoothed by applying a Gauss distribution and undergo a density correction.

The model power curve is conceived by averaging the power curves of an Enercon

E 82 and a Vestas V90 wind turbine [Kohler et al., 2010, p. 96 f.].

Knorr [2016, p. 127] depicts the generation of wind farm power curves by a summa-

tion of single power curves in his work. To account for the spatial distribution of the

wind speeds he smooths the aggregated power curves as described in Section 2.4.1.

Like the ”dena-Netzstudie II” he uses a density correction. In addition to that Knorr

[2016, p. 96] points out a proceeding that is not presented in the other studies men-

tioned before. Due to the different hub heights wind turbines within one wind farm

might have he suggests to use a height correction for the power curve wind speeds

to the mean hub height of the wind farm. The suggested Equation (2.25) calculates

a power curve wind speed vstd,hWF
at the average wind farm hub height hWF (see

Equation (2.27)) by the logarithmic wind profile (see Equation (2.1)), where hWT is
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the hub height of the single wind turbine and vstd,hWT
the original power curve wind

speed at turbine hub height.

vstd,hWF
= vstd,hWT

·
ln
(
hWF

z0

)
ln
(
hWT

z0

) (2.25)

2.5.2 Average power-weighted hub height

Finally, before the power output can be calculated with a wind farm, cluster or

model power curve the average hub height of the included wind turbines is needed.

In the ”dena-Netzstudie II” Kohler et al. [2010, p. 94] calculate a power weighted

mean hub height hnode,2020 for a node in 2020 by using Equation (2.26). The first part

of the equation weighs the hub height hWT,2020 estimated for 2020 with the newly

installed power over the estimated installed power in 2020 Pn,2020. The second part

of the equation sums up the hub heights of the existing turbines in 2007 hWT,k,2007

that are weighted with the installed power likewise.

hnode,2020 = hWT,2020
Pn,2020 − Pn,2007

Pn,2020

+
∑
k

hWT,k,2007
Pn,k,2007

Pn,2020

(2.26)

Knorr [2016, p. 34 f.], as well, calculates a power weighted mean hub height as

shown in Equation (2.27). In contrast to the ”dena-Netzstudie II” he sums up the

logarithm of the hub heights hWT,k of the wind turbines after multiplying them with

the ratio of the nominal power of the turbine Pn,k and the total nominal power of

all turbines
∑
k
Pn,k.

hWF = exp

∑
k

ln(hWT,k)
Pn,k∑
k
Pn,k

 (2.27)
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3
Data basis for the validation of the open

source model

This chapter presents two weather data sets used in this thesis in Section 3.1. Mea-

sured feed-in and wind speed time series for the validation of the model are presented

in Section 3.2. Before the measured data can be used for the validation it has to be

processed which is depicted in Section 3.3. This chapter ends in Section 3.4 with a

short description of the wind turbine data needed for simulations.

3.1 Weather data

For the simulation of wind feed-in time series two different weather data sets are used

in this thesis. They differ in temporal and spatial resolution as well as in heights

above ground for which weather data is available. These different weather data sets

are used to investigate the influcence of different input data on the results. MERRA

(and MERRA-2) is a weather data set frequently used in energy systems simulations

which was in first place not created for that purpose. In contrast, the open FRED

weather data set is especially adjusted to energy systems simulations.

NASA’s reanalysis weather data set MERRA-2

MERRA-2 is the second version of the Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) provided by the NASA [Pawson, 2017]. It is a

long-term global reanalysis weather data set which includes data that ranges from

1980 until today with a temporal resolution of one hour. The spatial resolution is
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the same as in the first version of MERRA: 0.5◦ x 0.625◦ [Global Modeling and

Assimilation Office, 2012, p. 6], which corresponds to about 50 km in the latitudi-

nal direction. For wind feed-in simulations interesting data of MERRA-2 comprises

wind speeds at 50 m (and two and ten meters above displacement height), temper-

ature, pressure and roughness length. This data set will be referred to as MERRA

(weather) data in this thesis.

Open FRED test weather data set

The second weather data set used in this thesis is a test data set from the weather

data that is created by the Helmholtz-Zentrum Geesthacht1 for the open FRED

project which was mentioned in Section 1.4. This test data set exists for the years

2015 and 2016 and will be referred to as open FRED (weather) data in this work.

It was generated with the COSMO-Model in CLimate Mode (COSMO-CLM) of the

Climate Limited-area Modelling Community [2018] using MERRA data as input

data. The COSMO-Model is an atmospheric prediction model which was developed

by the Consortium for Small-Scale Modelling [2011] from the formerly Lokal Modell

from Deutscher Wetterdienst (DWD) [Steppeler, Doms, and Adrian, 2002]. The

temporal resolution of the open FRED weather data is 30 minutes and the spatial

resolution about 6.6 km (0.0625◦). At the moment the data set comprises a rough-

ness length as well as wind speed, wind direction, pressure and temperature at the

following heights: 10 m, 80 m, 100 m, 120 m, 140 m, 160 m, 200 m, 240 m. In

the future further variables like density and turbulence intensity are planned to be

added. Apart from these values the open FRED weather data set contains values

interesting for solar and hydro power simulations.

The MERRA and open FRED weather data sets at one glance

Table 3.1 shows an overview over both weather data sets used in this thesis. It

can be seen that the spatial as well as the temporal resolution of the open FRED

weather data is finer than the one of the MERRA data. Apart from that, wind

speed, pressure and temperature is available at far more heights in the open FRED

than in the MERRA weather data set.

1https://www.hzg.de/index.php.de
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Table 3.1: Overview over the weather data sets MERRA and open FRED

Resolution MERRA open FRED

Spatial resolution ∼ 50 km ∼ 6.6 km
Temporal resolution 60 min 30 min

Parameters MERRA heights open FRED heights

Wind speed 50 m
10m, 80m, 100m, 120m,

140m, 160m, 200m, 240m
Temperature 2 m above displacement height
Pressure 0 m

Density 0 m expected in Summer 2018
Roughness length available available

3.2 Measured feed-in and wind speed data

For the validation of the Windpowerlib measured wind feed-in time series are needed.

As the open FRED test weather data set provides data for the years 2015 and 2016

measured feed-in time series for this time period are used. Apart from that, it is

convenient to use time series of wind farms at different locations. For simulations

in this thesis feed-in time series of five wind farms are available. Their locations

differ from close to the north sea coast in Schleswig-Holstein to flat inland country

in Brandenburg. Moreover, the wind farms are of different sizes, from two to 17

wind turbines within one farm, and they include different turbine types. As names

and exact locations of the wind farms are not permitted to be named alias names are

given for each wind farm (WF) and locations are only named by region. Table 3.2

shows characteristics of these wind farms and Table 3.3 of the time series provided for

these wind farms. The temporal resolution of the obtained time series ranges from

one to ten minutes and their values were averaged from more frequent measurements

according to the providers of the data.

Table 3.2: Characteristics of the wind farms measured feed-in time series are available for in this
work

Alias Location
Amount of Mean hub Power

turbines height [m] class(es) [MW] Comments

WF BE Brandenburg (east) 9 105 2 add. WF in the west
WF BNW Brandenburg (north-west) 2 60 2 surrounded by other wind turbines
WF BS Brandenburg (south) 14 105 2 add. WF in the south and east
WF BNE Brandenburg (north-east) 17 104.5 1,5 – 2 various turbine types
WF SH Schleswig-Holstein 6 64 2,3 -

Wind farms BE, BNW and BS are situated in east, north-west and south Branden-

burg. The data available for these wind farms comprises wind speed, power output,

wind direction and nacelle position for the single wind turbines. In addition to that,

error codes for each time step and wind turbine are available of which some only
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Table 3.3: Characteristics of the measured feed-in time series

Temporal resolution [min] Wind speed Curtailment
Alias 2015 2016 data corrected data

WF BE 10 10 yes -
WF BS 10 10 yes -
WF BNW 10 10 yes -
WF BNE - 5 no information provided
WF SH 5 1 no information -

represent a warning. The wind speed data originates from the nacelles but was cor-

rected by the operator to represent wind speeds in front of the rotors. For the wind

turbines of WF BE no wind directions are available. Therefore, nacelle positions

of the wind turbines are used for all wind farms instead of wind directions after

making sure that existing wind directions (of WF BNW and WF BS) have a strong

correlation with the nacelle positions and that the average deviation between these

two is low (see Appendix A.1). The surroundings of the wind farms were described

by the provider of the data as follows. While in the west of WF BE only a narrow

area is covered by another wind farm WF BS has high coverage in the south to east.

No information like that was given for WF BNW, however, investigation on Open

Street Map (OSM) showed that the turbines are surrounded by other wind turbines.

Time series for WF BNE are only available for the year 2016. This wind farm is

located in north-east Brandenburg and is the only wind farm in this thesis comprising

more than one wind turbine type and different hub heights. Apart from wind speed

and feed-in time series curtailment data is available for this wind farm. During

the simulation of the feed-in of this wind farm this curtailment data is taken into

consideration by reducing the simulated power output by the curtailment at each

time step. Time steps that contain total curtailment (switch off) are not considered

as the concordance of simulated and measured time series would obviously be 100 %

for these time steps (power output of zero) which would distort the results. As

according to the provider some of the wind direction data contains an azimuth error

it is not used in this thesis. No other wind turbines could be found close to WF

BNE on OSM and villages lie one to two kilometers away.

Wind farm SH is situated in Schleswig-Holstein not far from the coast. The obtained

data comprises power output, wind speed and wind direction of the wind turbines.

However, no information about whether the wind speed data was corrected and

whether measured wind directions are correct has been received. The measurement

data of 2015 starts in May.
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To be comparable with the calculated time series in this thesis which have the

temporal resolution of the weather data (see Section 3.1) all measured feed-in time

series are resampled to 30 and 60 minutes2. Moreover, some of the data is missing

or filtered out due to error codes or other occurrences which is explained later in

Section 3.3.

3.3 Pre-processing of measured time series

This section describes how obtained data is processed before using it for the valida-

tion of the Windpowerlib in this thesis.

3.3.1 Aggregation and filtering

Wind farm feed-in time series are attained from the data mentioned in Section 3.2

by aggregating the provided power output of the wind farms’ wind turbines. Only

if the power output for all turbines is available and if for none of the turbines an

error is indicated by the error code a time step is considered in the aggregation.

As wind turbines have an energy consumption at stand still the measured feed-in

time series contain negative values. This is not considered in the Windpowerlib and

the validation concentrates on the functionalities existent in the model. Therefore,

negative power output values are filtered out.

In Section 3.2 it was mentioned that for the wind farms BE, BNW and BS error

codes are available for each time step. During the pre-processing of the data all time

steps belonging to error codes not indicating a warning but an error are filtered out.

Moreover, duplicated time steps detected in some of the time series of WF BE, WF

BNW and WF BS are dropped and one single time step is kept3. Apart from that,

some of the time steps of the time series of the same wind farms contain zeros for all

values of one wind turbine which is assumed to represent an error. Thus, these values

are filtered and the wind farm power output of these time steps is not considered

in the simulations. Furthermore, implausible high power output is detected in some

time steps which are cleaned by excluding power outputs that are more than five

percent higher than the nominal power of the wind turbines.

2The resampling is done by taking the arithmetic mean of the values in the respective time
period.

3apart from one time step in WF BE of which the duplicates contain ambiguous values which
is why it is not considered in the calculations
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After having processed the measurement data of WF BE, BNW and BS the amount

of time steps listed in Table 3.4 is available for the simulations before changing the

temporal resolution.

Table 3.4: Amount of available time steps per year in wind farm feed-in time series after the
processing

Wind farm 2015 2016

BE 30760 30432
BNW 33646 35660
BS 28072 24196

3.3.2 First row time series

For the validation of some of the functionalities (see Sections 4.2.3 and 4.2.3) and of

the single wind turbine model (see Section 4.2.4) wind speed and power output time

series of wind turbines not influenced by other wind turbines are necessary. These

time series are attained by choosing wind turbines standing in the first row of a wind

farm depending on the measured wind direction. This is done for the wind farms BE,

BNW and BS as information is provided that measured wind directions are correct

and as correlations with and deviations from nacelle positions were evaluated (see

Section 3.2). These time series will be referred to as first row power output and first

row wind speed time series (or data) in the remaining work. To attain the first row

wind speed time series of a wind farm for each bin of 45◦ a wind turbine that would

not be influenced by other wind turbines is found. All time steps of a measured wind

speed time series of a wind turbine at which the measured wind direction fits in the

wind direction bin the wind turbine stands for are used for the first row time series.

As the measured wind directions of all wind turbines are not identical for each time

step some time steps are created by the average wind speed of several wind turbines

with fitting wind directions. First row power output time series are created in the

same way.

Before this processing is done, the measured wind directions of all wind turbines are

evaluated considering their correlation by using the Pearson correlation coefficient

as defined in Section 4.2.1. The wind direction time series of two turbines of WF

BE show weak correlations with the other wind direction time series of this wind

farm and are, therefore, not utilized. Due to that, wind direction bins from 0◦ to

90◦ and from 180◦ to 225◦ are not considered for this wind farm. Furthermore,

negative wind directions at one wind turbine of WF BS lead to weak correlations. It
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is assumed that the measurement device wrote down negative values when the wind

direction jumped from 0◦ to wind directions lower than 360◦. Therefore, these values

are adjusted by adding 360◦ which results in plausible correlations (see Table A.1

in the Appendix A.1). Table 3.5 lists the amount of time steps available after the

processing for the simulations with first row time series before changing the temporal

resolution.

Table 3.5: Amount of available time steps per year in first row feed-in and wind speed time series
after the processing

Wind farm Data 2015 2016

BE power output 21998 22687
wind speed 27265 28706

BNW power output 35483 38183
wind speed 46617 51336

BS power output 31363 29434
wind speed 40343 40606

3.4 Wind turbine data

For the simulations in this thesis the following turbine data is needed:

• Power curve or power coefficient curve

• Turbine hub height

• Rotor diameter

The Windpowerlib provides power curves of 158 and power coefficient curves of 91

turbine types. All turbine types relevant for this work can be found there. Hub

heights and rotor diameters are taken from data sheets if they are not given in the

master data of the measured feed-in time series.
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Methodology

The methodology of this work is divided into two mayor topics. Section 4.1 presents

the implementation of the open source model while the methodology for the valida-

tion of the Windpowerlib is depicted in Section 4.2.

4.1 Implementation of the open source model

This section deals with the implementation of the Windpowerlib. Section 4.1.1

introduces the general structure of the model while Section 4.1.2 depicts the im-

plementation of functionalities. Section 4.1.3 presents default models for an easy

start into working with the Windpowerlib and Section 4.1.4 shows an overview of

the required input data. A detailed description of all functions, classes and all their

parameters can be found in the documentation which is hosted at Readthedocs1, a

web platform for documentations. The version of the Windpowerlib developed in

this thesis can be found in the developer branch on Github2.

4.1.1 General structure

As mentioned earlier in Section 1.2 the Windpowerlib is aimed to be constructed as

a flexibly applicable library. Therefore, diverse functions and classes for modelling

wind power plants and calculating their power output are implemented in a way

that they can be utilized independently.

The basicmodel module of Windpowerlib v0.0.4 (see Section 1.2) is turned into the

module wind_turbine and the functions for wind speed and density calculations

1http://Windpowerlib.readthedocs.io/en/latest/
2https://github.com/wind-python/windpowerlib/tree/9bca91f
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are moved to separate modules. All functionalities are gathered within the following

modules concerning topics:

• wind_turbine

• wind_farm

• wind_turbine_cluster

• tools

• wind_speed

• temperature

• density

• power_output

• power_curves

• wake_losses

• modelchain

• turbine_cluster_modelchain

The wind_turbine module consists of the class WindTurbine which models a wind

turbine as well as functions that read and restructure wind turbine data like power

curves or Cp-curves. Additionally, it contains the function get_turbine_types()

which lists all turbine types of which the power curve or Cp-curve is provided within

the Windpowerlib.

A wind farm can be modeled with the class WindFarm in the wind_farm module.

Additionally, this module contains functions for the calculation of its mean hub

height and installed power as well as the function power_curve for generating an

aggregated wind farm power curve. Similarly the wind_turbine_cluster module

contains the class WindTurbineCluster representing a cluster of several wind farms

(belonging to the same weather data point) and functions for the calculation of its

mean hub height, installed power and aggregated power curve. The implementation

of aggregated power curves is further described in Section 4.1.2.

In the tools module functions providing tools for the functionalities of the Wind-

powerlib are gathered. The modules wind_speed, temperature and density con-

tain functions to correct the respective value to be valid at hub height of a wind

turbine. These, the power_output and the power_curves module containing func-

tions for power output calculations and respectively for power curve alterations and
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the wake_losses module containing functions for modelling wake losses are further

described in Section 4.1.2.

Additional modules called modelchain and turbine_cluster_modelchain are con-

structed to ensure an easy start into the Windpowerlib. They contain the classes

ModelChain and TurbineClusterModelChain which work like models that combine

all functions provided in the library. Flow charts of these models and further expla-

nations can be found in Section 4.1.3.

4.1.2 Implementation details

Height correction and conversion of weather data

In this section the functionalities for height corrections and conversion of weather

data are presented ordered by the modules they are implemented in.

tools: In this module a function implementing a linear inter-/ extrapolation using

Equation (4.1) can be found. This function can be used whenever values are known

at two different heights. As the wind speed follows rather a logarithmic profile than

a linear function a logarithmic inter-/ extrapolation as shown in Equation (4.2) is

provided, as well.

f(x) = (f(x2)− f(x1))
(x2 − x1) · (x− x1) + f(x1) (4.1)

f(x) = ln(x) · (f(x2)− f(x1))− f(x2) · ln(x1) + f(x1) · ln(x2)
ln(x2)− ln(x1) (4.2)

wind_speed: The following possibilities are implemented for the height correction

of wind speed to the hub height of a wind turbine.

Logarithmic wind profile → logarithmic_profile()

Hellman equation → hellman()

Logarithmic inter- or extrapolation → logarithmic_interpolation_extrapolation() (tools)

The logarithmic wind profile is implemented in the function logarith-

mic_profile() by Equation (2.2).
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To the function hellman() in which the Hellman equation is implemented by Equa-

tion (2.3) a Hellman exponent can be passed. If no Hellman exponent but a rough-

ness length is passed, the Hellman exponent is calculated via Equation (2.4). If

neither a Hellman exponent nor a roughness length is provided, a Hellman exponent

of 1/7 is assumed.

Alternatively, the wind speed at hub height can be determined by using the func-

tion logarithmic_interpolation_extrapolation() of the tools module if wind

speeds are available for at least two different heights.

temperature: For temperature height correction the following functions can be

used.

Linear gradient → linear_gradient()

Linar inter- or extrapolation → linear_interpolation_extrapolation() (tools)

The linear_gradient() function of the Windpowerlib assumes a standard atmo-

sphere [Deutscher Wetterdienst, b] and calculates the temperature at hub height via

Equation (2.7). To apply the linear_interpolation_extrapolation() function

of the tools module input data has to provide temperature data for at least two

different heights.

density: The following functions for the height corrections of air density are pro-

vided.

Barometric height equation → barometric()

Ideal gas equation → ideal_gas()

Linar inter- or extrapolation → linear_interpolation_extrapolation() (tools)

The barometric height equation is implemented in the function barometric()

as described in Equation (2.5) and the ideal gas equation in the function

ideal_gas() like shown in Equation (2.8). In both functions the pressure at

hub height is calculated via Equation (2.6). As a third possibility the lin-

ear_interpolation_extrapolation() function of the tools module can be used.

Equally to the height corrections of wind speed and temperature density data has

to be provided at least at two heights to apply this function.
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Power output calculations

The power_output module is divided into the following two main functionalities

of which the power_curve() function can be used in combination with a density

correction.

power coefficient curve → power_coefficient_curve()

power curve → power_curve()

If the power output of the examined wind turbine is calculated by its power coefficient

curve Equation (2.9) is used. For the power output calculations by using a power

curve the output of a certain wind speed is gained by interpolating between the

wind speeds of the power curve. The density correction is implemented as defined

in Equations 2.10 and 2.12 and is carried out if the parameter density_correction

of the power_curve() function is set to True.

Wake losses

In Section 1.2 it was outlined that the Windpowerlib will rather be applied for

calculating the feed-in of larger areas than for single wind farms. As explained in

Section 2.3.3 using one of the explicit or implicit wake models listed in that section

is very time intensive for larger nodes and often not viable due to an incomplete

data basis. Therefore, wake losses are taken into consideration by implementing the

following options for considering wake losses.

wind efficiency curve → get_wind_efficiency_curve() (wake_losses)

→ reduce_wind_speed() (wake_losses)

constant efficiency → wake_losses_to_power_curve() (power_curves)

power efficiency curve → wake_losses_to_power_curve() (power_curves)

The Windpowerlib provides the mean wind efficiency curves of the ”dena-Netzstudie

II” [Kohler et al., 2010] and Knorr [2016] that depict the wind speed reduction within

a wind farm (see Section 2.3.3). The functions for the usage of wind efficiency curves

are located in the module wake_losses. A wind efficiency curve can be fetched

by the function get_wind_efficiency_curve() and all curves can be displayed

using display_wind_efficiency_curves(). The same module contains a function
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reduce_wind_speed() that applies a wind efficiency curve on a wind speed time

series.

In addition to that, the option of defining a constant wind farm efficiency, that

is applied to the power curve of a wind farm, is implemented in the function

wake_losses_to_power_curve() in the power_curves module. In this function

the values of a wind farm power curve are reduced by the respective efficiency. How-

ever, as mentioned in Section 2.3.3 Barthelmie et al. [2013, p. 1017] found out that

the wind farm efficiency changes significantly with the wind speed. Thus, the appli-

cation of power efficiency curves (wind farm efficiency depending on the wind speed)

is implemented, as well. Like the constant efficiency power efficiency curves are ap-

plied to wind farm power curves. This has the advantage that they can further be

aggregated to achieve turbine cluster power curves as explained later.

Smoothing of power curves

To account for the spatial distribution of wind speeds a function for smoothing power

curves (smooth_power_curve()) is implemented in the power_curves module. This

function applies a Gauss distribution to power curves following the approach of Nør-

gaard and Holttinen [2000] like it is interpreted by Knorr [2016] (see Section 2.4.1)

and shown in Equation (2.21). The wind speed range and its block width (interval

length ∆vi in Equation (2.21)) are parameters of the function (wind_speed_range

and block_width) with default values of 15 m/s for the wind speed range and

0.5 m/s for the block width. Further parameters are the mean µ of the Gauss distri-

bution and a specification of the method for getting the standard deviation σ (Gauss

distribution). Options for the standard deviation are calculating it via a turbulence

intensity (TI method) by Equations 2.22 and 2.24 and a method proposed by Staffell

and Green [2014] that is shown in Equation (2.23) (SP method). The calculation via

a turbulence intensity is set as default. Decisions for the default values were made

based on Section 5.1.3.

Aggregated wind farm and turbine cluster power curves

As mentioned in Section 4.1.1 wind farm and turbine cluster power curves are

attained by aggregating wind turbine (or respectively wind farm) power curves.

This is implemented in the wind_farm module for wind farms and in the

wind_turbine_cluster module for clusters in the equally named functions as-

sign_power_curve(). Depending on the parameters the aggregated power curve

- 36 -



4.1 Implementation of the open source model

is smoothed as well as a wind farm efficiency (power efficiency curve or constant

efficiency) can be applied. When a turbine cluster is modeled the smoothing can

either be applied to the wind farm power curves or to the turbine cluster power

curve while wake losses are always applied to the wind farm power curves.

For the power output calculations with these aggregated power curves the mean

hub height of the wind farm or respective the cluster has to be calculated which is

implemented by Equation (2.27) in the classes WindFarm and WindTurbineCluster.

For the mean hub height of clusters the wind turbine specific values (WT) are

exchanged with the corresponding values of the wind farms contained in the clusters.

4.1.3 The modelchains: an easy start into simulations

As mentioned in Section 4.1.1 the modelchain and the turbine_cluster_modelchain

modules are implemented to ensure an easy start into the Windpowerlib. They work

like models that combine all functions provided in the library. Their functioning is

explained in this section by using flow charts.

Modelchain for single wind turbines

The modelchain module contains the class ModelChain which provides a simple

model that calculates the power output of a wind turbine. The class is initialized

with a WindTurbine object (see Section 4.1.1) and certain parameters describing the

desired usage of the Windpowerlib. For parameters that are not specified default

parameters are used. All parameters and their default values are described in the

documentation of the Windpowerlib3. The model is started by carrying out the

function run_model() which requires a MultiIndex data frame containing weather

data as input parameter. How such a MultiIndex data frame can be created is

explained in an example in the documentation of the function. The flow chart of

the ModelChain presented in Figure 4.1 shows the behavior of the model depending

on the parameters. When running the model it is first checked whether wind speed

data is available at hub height. If the wind speed data has to be corrected to hub

height a height correction is carried out depending on a parameter specifying which

function to use. After that, it is checked whether density is needed for further

calculations which is the case if a density corrected power curve or Cp-curve is used

for power output calculations. Methods for density, temperature and power output

3http://Windpowerlib.readthedocs.io/en/latest/
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calculations are carried out depending on the parameters as shown in the flow chart.

Finally, the calculated power output is assigned to the WindTurbine object.
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Figure 4.1: Flow chart of the ModelChain

Modelchain for wind farms and clusters

The TurbineClusterModelChain is a subclass of the ModelChain which is why it

comprises the same parameters and functions to which wind farm and cluster spe-

cific parameters are added. Similarly to the ModelChain class an object of the class

TurbineClusterModelchain is initialized with a WindFarm or a WindTurbineClus-

ter object (see Section 4.1.1) and parameters for which default values are used if

not specified. Like the ModelChain the model of the TurbineClusterModelChain

is started by a function run_model() using a MultiIndex data frame containing

weather data as input parameter. Figure 4.2 shows the behavior of the model in a

flow chart. At first it is checked whether the power plant with which the class was

initialized is a wind farm or a cluster. The difference between them is that for a

cluster wind farm power curves of each wind farm are generated before aggregating

them to a cluster power curve while for a wind farm its power curve is assigned to

the object directly. As can be seen in the flow chart this is done by the function

assign_power_curve() of the WindFarm module, which is illustrated in Figure 4.3.
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Figure 4.2: Flow chart of the TurbineClusterModelChain
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Within this function wind turbine power curves are aggregated to a wind farm power

curve. After that, depending on the parameters smoothing and wake losses are

applied to the power curve which is then assigned to the WindFarm object. After the

generation of a wind farm or cluster power curve the mean hub height of the power

plant is calculated (see Figure 4.2). It follows a height correction of weather data

like depicted for the ModelChain class in Figure 4.1. If the name of a wind efficiency

curve is given as method for considering wake losses wind speeds are reduced by this

wind efficiency curve. Then, the power output of the power plant is calculated as in

the ModelChain (see Figure 4.1). Finally, the calculated power output is assigned

to the power plant object.

Start

aggregate wind tur-
bine power curves

power curve
smoothing

smooth power curve

wake losses
model

reduce power curve
values by efficiency

assign power curve
to wind farm

Stop

yes

no

power_efficiency_curve
or constant_efficiency

other

Figure 4.3: Flow chart of the functionality assign_power_curve() of the WindFarm class
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4.1.4 Required input data

As shown in the illustration of the input and output parameters of the Windpowerlib

in Figure 4.4 weather and turbine data are necessary input data for the calculation

of power output time series. The weather data must include a wind speed time

Figure 4.4: Illustration of input and output parameters of the Windpowerlib

series and depending on the functions being used roughness length, temperature

and pressure (or density) data has to be added. In addition to the weather data the

corresponding heights at which the respective data was measured or modeled has

to be provided. If the ModelChain is used the weather data has to be stored in a

MultiIndex data frame the creation of which is explained in the documentation of

the Windpowerlib. If, however, the simulation is run with single functions this is

not necessary as they only require time series (that can be arrays or series) of the

respective weather data.

Concerning the turbine data the hub height of a simulated wind turbine (or wind

farm or wind turbine cluster) is required in all cases whereas rotor diameters are

only necessary for calculations with Cp-curves (see Table 4.1). A power or Cp-curve

is necessary for the respective functionality. Power curves of 158 and Cp-curves of

91 turbine types are provided in the Windpowerlib. An overview of all provided

turbine types can be retrieved by using the function get_turbine_types() of the

wind_turbine module.

Table 4.1 shows input data that is required for the respective functions. Apart from

the named functions for height corrections of wind speed, temperature and density

a function carrying out linear inter- or extrapolation can be used as well. For this

function the respective weather data is required for at least two heights. For wind

speed height correction with the Hellman function roughness length and Hellman

exponent, which can be estimated with the roughness length, are optional. If both
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are not given a Hellman exponent of 1/7 is assumed. For smoothing power curves

a roughness length is needed if a turbulence intensity should be calculated for the

standard deviation of the Gauss function (see Equation (2.24)), however, is not

necessary for a standard deviation by Equation (2.23) called Staffell Pfenniger (SP)

method.

Table 4.1: Overview of the functions of the Windpowerlib and the required data

Functionality
wind roughness

temperature density pressure
rotor

speed length diameter

wind speed
logarithmic profile 3 3 - - - -
hellman 3 optional - - - -

density
barometric - - 3 - 3 -
ideal gas equation - - 3 - 3 -

temperature
linear gradient - - 3 - - -

power output
power curve 3 - - - - -
power curve density corr. 3 - - 3 - -
Cp-curve 3 - - 3 - 3

power curve alterations
smooth power curve - optional - - - -
wake losses - - - - - -

4.2 Validation of the Windpowerlib

For the validation of the Windpowerlib simulated feed-in time series are compared

with measured feed-in time series. Apart from feed-in time series wind speed time

series are validated by using measured wind speed data. Statistical metrics for the

evaluation of simulation results are introduced in Section 4.2.1, Section 4.2.2 deals

with the temporal and spatial resolution of simulated time series and Sections 4.2.3

to 4.2.6 focus on the description of simulations carried out for the validation. The

simulations are carried out with the version of the Windpowerlib developed in this

thesis which can be found in the developer branch of the Windpowerlib on Github4.

4https://github.com/wind-python/windpowerlib/tree/9bca91f
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4.2.1 Statistical metrics

Pearson correlation coefficient

The Pearson correlation coefficient (in the literature often: Pearson’s r or Pr) is used

in many studies listed by Sharp [2015, p. 59] to describe the correlation of simulated

with measured time series. Fahrmeir, Heumann, Künstler, Pigeot, and Tutz [2016,

p. 126 ff.] explain the nature and the applications of this statistical metric and the

following explanations are taken from their work.

The Pearson correlation coefficient Pr specifies how strong the linear correlation is

between two variables or in the case of this thesis between two time series. It’s defini-

tion is shown in Equation (4.3). The denominator normalizes the equation whereas

the numerator evolves from the sum of the products of the deviations between time

series steps (xi and yi) and their averages (x and y).

Pr =

n∑
i=1

(xi − x)(yi − y)√
1
n

n∑
i=1

(xi − x)2(yi − y)2
(4.3)

The Pr can reach values between -1 and 1. A Pr of zero points out that there is no

correlation between the compared time series, Pr = 1 indicates a maximum positive

correlation and Pr = −1 a maximum negative correlation.

Fahrmeir et al. [2016, p. 130] propose a classification of the values between 0 and 1

as follows, however, state that this is used for rather exact measurements.

”weak correlation” → |Pr| < 0.5

”middle correlation” → 0.5 <= |Pr| < 0.8 (4.4)

”strong correlation” → 0.8 <= |Pr|

As the Pearson correlation coefficient takes a linear correlation but not a potential

bias into consideration additional metrics as the bias and the root mean squared

error are as well considered in this thesis.

Bias

Two time series correlating strongly with each other can still imply a bias which

results from a deviation between the values although the course of the time series is
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similar. The bias of one time series concerning another time series is a time series

itself. To achieve one single index per time series for a comparison of several time

series in this thesis a mean bias is calculated. It is defined as an arithmetic mean

like declared in Equation (4.5) where bavg is the mean bias, bi the bias of element i

of the time series and n the number of time steps.

bavg = 1
n

n∑
i=1

bi (4.5)

As in the sum of Equation (4.5) positive and negative values can balance out the

root mean squared error described in the next section is considered, as well, in this

thesis.

Root mean squared error

In contrast to the bias, introduced in the last section, the root mean squared error

(RMSE) adds up squared errors which prevents negative and positive values to

balance out. The RMSE is calculated by Equation (4.6) where xi is the ith element

of one time series, yi the ith element of the other time series and n the amount of

time steps considered. As the root is taken of the sum of the squared errors the

RMSE has the same unit as the values of the time series.

RMSE =
√√√√ 1
n

n∑
i=1

(xi − yi)2 (4.6)

To be able to compare the RMSE of time series from different wind farms a relative

RMSE is defined in Equation (4.7) where RMSE is the RMSE from Equation (4.6)

and mean the mean value of the time series.

RMSE [%] = RMSE

mean
· 100 (4.7)

Standard deviation

To measure the distribution of values of a time series around its mean value the

standard deviation is used. It is obtained by the root of the variance σ2 which is

shown in Equation (4.8). The standard deviation σ is defined in Equation (4.9). In
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both equations x is the mean value of the examined time series, xi the ith element

of the same time series and n its amount of time steps.

σ2 = 1
n

n∑
i=1

(xi − x)2 (4.8)

σ =
√
σ2 =

√√√√ 1
n

n∑
i=1

(xi − x)2 (4.9)

Like the RMSE the standard deviation has the same unit as the observed values. As

the deviations from the mean value are squared they are all included as a positive

value which means that like for the RMSE positive and negative values do not

compensate each other. [Fahrmeir et al., 2016, p. 65]

4.2.2 Temporal and spatial resolution of the examined time series

The time series considered in this thesis are of different temporal resolutions. As

known from Table 3.1 the temporal resolutions of the weather data time series are

30 and 60 minutes whereas the resolutions of the measured feed-in time series range

from one to ten minutes (see Table 3.3). When it comes to the validation it makes

sense to change the temporal resolutions of all time series to the lowest resolution

which would be 60 minutes. However, as in this thesis the influence of the input

data is evaluated, both half-hourly and hourly time series are considered while half-

hourly time series are only used for simulations with open FRED weather data. The

target resolution is attained by averaging time series with higher resolutions. To get

an idea about the canceling out of errors over time monthly mean values (monthly

resolution) are examined, too. For the evaluation of a yearly mean the annual energy

output of simulated and measured time series is compared which is identical with an

annual mean power output multiplied by time. The averaging from higher to lower

temporal resolutions only takes place for more than 50 % available values within

the target time period. For instance to achieve a temporal resolution of 60 min

from a time series with a resolution of ten minutes at least four time steps have

to be available (no error, not missing). In some cases of the first row time series

(see Section 3.3.2) not enough time steps are available for attaining the monthly

resolution.

Concerning the spatial resolution of time series the selection is limited by the avail-

able measured feed-in time series. To validate the power output calculations for a

single wind turbine first row time series are considered. Furthermore, the calculated
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power output calculations of wind farms of different sizes which were shown in Ta-

ble 3.2 are validated. As each of these wind farms is situated in a different region

and, thus, is assigned to a different weather data point, the aggregated power output

of a wind turbine cluster is not validated.

4.2.3 Single functionalities

This section describes simulations that are carried out for the validation of single

functionalities of the Windpowerlib. Functionalities calculating the air density are

not evaluated as appropriate data is not available.

Wind speed height correction functionalities

Researchers found out that the performance of the logarithmic wind profile and the

Hellman equation depends on site conditions which was stated in Section 2.1.1. As

the choice of measurement data available in this work (see Section 3.2) is restricted

the performance of these methods is not specifically evaluated. It is rather focused

on their performance depending on the height at which wind speed data is available.

Wind speed data is often available at ten meters above ground [Sharp, 2015, p. 82],

MERRA provides wind speeds at 50 m and the open FRED weather data includes

wind speeds at various heights that are calculated with a complex climate model.

The wind speed height correction functionalities implemented in the Windpowerlib

are less complex than calculations within climate models. It is aimed to analyze the

results of these simplified calculation methods when extrapolating wind speeds from

different heights (calculated in the climate model) to hub heights.

For the examination wind speed height correction functionalities of the Windpow-

erlib are applied on open FRED wind speed data at 10 m, 80 m and 100 m above

ground. The calculated wind speed at hub height is validated with first row wind

speed data that was derived from the measurements at the wind farms BE, BS

(105 m hub heights) and BNW (60 m) in east, south and north-west Brandenburg

(see Table 3.2 and Section 3.3.2). In addition to that, the performance of a logarith-

mic interpolation between wind speeds of different data heights is compared with

the other functions.

Table 4.2 shows the characteristics of the simulations that are done for these eval-

uations. The Hellman equation is applied with α calculated by Equation (2.4) (H)

and with α = 1/7 (H2), which is assumed in many studies (see Section 2.1.1).
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Table 4.2: Characteristics of simulations run for the validation of wind speed functionalities

Name Function Special parameters Weather data height [m]

Log 100 logarithmic_profile() - 100
Log 80 logarithmic_profile() - 80
Log 10 logarithmic_profile() - 10
H 100 hellman() - 100
H 80 hellman() - 80
H 10 hellman() - 10
H2 100 hellman() α = 1/7 100
H2 80 hellman() α = 1/7 80
H2 10 hellman() α = 1/7 10

Log. Interp.
logarithmic_interpolation_

-
100, 120 or

extrapolation() 10, 80 (BNW)

Power output calculation functionalities

The power output calculation functionalities of the Windpowerlib are validated by

using measured wind speeds instead of reanalysis wind speeds from the weather data

sets for the calculations. This has the advantage of separating errors caused by the

weather models and by height corrections from the performance evaluation of the

power output functionalities. The wind speeds are taken from the measurement

data of three wind farms in Brandenburg (WF BE, WF BNW and WF BS; see

Table 3.2). According to the provider of this data the wind speeds were measured

at the nacelles of the wind turbines and corrected to represent wind speeds in front

of the rotors (see Section 3.2). This way the power output methods are validated

with data from 24 turbines and two years. Table 4.3 shows an overview of these

simulations that are carried out with both weather data sets. For the Cp-curve and

density corrected power curve approach the density is calculated with the ideal gas

equation. During tests in the Windpowerlib no great difference was detected between

the ideal gas equation and the barometric height equation. The temperature at hub

height necessary for the density calculations is calculated with a linear gradient (see

Section 4.1.2) to use the same equation for MERRA and open FRED data5.

Table 4.3: Characteristics of simulations run for the validation of power output functionalities

Name Function Density correction Weather data

P-curve power_curve no -
Cp-curve power_coefficient_curve no open FRED, MERRA
P (d.-c.) power_curve yes open FRED, MERRA

5For open FRED data a linear interpolation between two heights could be used but MERRA
data only contains one data height.
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Smoothing of power curves

Before validating the functionality for smoothing power curves its parameters are

analyzed and appropriate values are chosen. Whenever weather data is necessary

for the simulations (for instance TI method, see Section 4.1.2) they are carried out

with open FRED weather data.

Parameters At first the parameter wind_speed_range for which the sum in Equa-

tion (2.21) is taken and its block width (parameter block_width) of the function

are evaluated. Then two options of calculating the standard deviation of the Gauss

distribution are examined.

As mentioned in Section 2.4.1 Nørgaard and Holttinen [2000, p. 3] recommend to

use a wind speed block range from at least -5 m/s to +5 m/s. Therefore, this range

and additionally the following are tested on the power curves:

• -10 m/s to +10 m/s

• -15 m/s to +15 m/s

• -20 m/s to +20 m/s

For decisions about the block width power curves smoothed with values of 0.1 m/s,

0.5 m/s and 1 m/s are examined. Furthermore, power curves are smoothed with

a normalized standard deviation calculated by a TI (Equations 2.22 and 2.24) and

with a normalized standard deviation calculated by the SP method shown in Equa-

tion (2.23).

Validation Looking at the smoothed power curve that was shown in Figure 2.3 it

might be assumed that the application of this method would reduce the calculated

power output. However, for low wind speeds the power output of the smoothed

power curve lies above the original power curve6. Therefore, it depends on the

prevailing wind speeds whether power curve smoothing would rather induce over-

or underestimation of power outputs. For the later validation of the wind farm

model (see Section 4.2.5) it is convenient to analyze whether the application of

smoothed power curves has a positive effect on the simulation results compared

to simple aggregation. Furthermore, as mentioned in Section 2.4.1 the fluctuation

6This difference can be higher than in Figure 2.3 depending on the methods used.
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(standard deviation) of simulated time series is supposed to be reduced by power

curve smoothing. It is examined whether the fluctuation of measured time series are

represented well by the simulated time series.

For these purposes three simulations that are illustrated in Table 4.4 are carried

out for the five wind farms listed in Table 3.2. Two simulations use the standard

deviation methods TI and SP. A third simulation that simply aggregates the single

wind turbine power outputs is done for comparison. Wind speed data for these

simulations is taken from the open FRED weather data set to look at the fluctuations

resulting from the power curve smoothing in combination with the wind speed data

being used in the wind farm model later. Wind speed height corrections are done

with the logarithmic wind profile in accordance with the findings of the wind speed

simulations in Section 5.1.1. As wind speed data height the one closest to hub height

is chosen as it is assumed that most users would decide on that. For power output

calculations the simplest method of using a power curve is chosen which leads to the

best results when the single wind turbine model is validated (see Section 5.2).

Table 4.4: Characteristics of simulations run for the validation of the smooth power curve function

Name Calculation method Standard deviation for the Gauss function

TI Smoothed wind farm power curve Turbulence intensity
SP Smoothed wind farm power curve Staffell-Pfenninger
Agg. Aggregated turbine power output -

Wake losses

In Section 4.1.2 the different ways of considering wake losses in a wind farm imple-

mented in the Windpowerlib were explained to be the following:

• Wind efficiency curve (reduction of wind speed)

• Power efficiency curve (reduction of power output)

• Constant (power) efficiency (reduction of power output)

While mean wind efficiency curves generated from wind farms in Germany (see

Figure 2.1 and Section 4.1.2) are provided as data in the Windpowerlib, no average

power efficiency curves could be found in the literature. To get a first impression

on the appearance and the performance of power efficiency curves such curves are

generated from measured feed-in data. They are calculated only for three wind
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farms (BE, BNW and BS) as wind directions measured at WF BNE contain errors

and no information about the correctness of wind directions measured at WF SH

is available (see Section 3.2). The methodology used is depicted later. The effect

of these curves, specifically created for single wind farms, on the power output is

compared with the mean wind efficiency curve that was generated in the ”dena-

Netzstudie II” (see Figure 2.1 and Section 2.3.3). In the remaining work this curve

will be called dena mean wind efficiency curve. As the dena mean wind efficiency

curve is applied to wind speeds and the calculated power efficiency curves to power

output a comparison between them is difficult. However, although the application

is different it is still expected that the power efficiency curves calculated for specific

wind farms would result in lower errors.

The simulations run for the comparison between the different approaches are illus-

trated in Table 4.5. They are carried out with open FRED reanalysis wind speeds.

These wind speeds are used instead of measured wind speeds as the latter induce

high underestimations which is also detected in the single wind turbine simulations

(see Section 5.2). For the evaluation of the functionalities for considering wake

losses it makes sense to use reanalysis wind speeds as the overall performance of the

simulations has to be evaluated. Open FRED wind speeds are chosen at the data

height closest to hub height and are corrected with the logarithmic wind profile. For

the power output calculations the power curve approach is used. Reasons for that

decision were given earlier when the simulations for the evaluation of power curve

smoothing were described. Apart from the wind and power efficiency curves the ap-

plication of a constant efficiency is evaluated. The aim of that is to evaluate whether

such a simplified consideration of wake losses would lead to acceptable results. While

pre-evaluating the model performance it has become clear that the application of

calculated power efficiency curves and of the dena mean wind efficiency curves will

result in overestimations. Therefore, a value lying in between the lower edges (not

the peaks in Figure 5.9) of the curves is chosen for the constant efficiency: 80 %.

Table 4.5: Simulations run for the evaluation of the functionalities for considering wake losses

Name Efficiency

Calc. Calculated power efficiency curves
Const. Constant efficiency of 80 %
Dena Mean wind efficiency curve (dena)
No losses No wake losses considered

The specific power efficiency curves of the wind farms BE, BNW and BS are produced

by, firstly, calculating the efficiency for each time step of the measured data using
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Equation (2.14). These efficiencies are, secondly, averaged in wind speed bins of

0.5 m/s. If for an ”inner” wind speed bin no value is existent it is interpolated while

missing values at the edges are set to an efficiency of one to achieve a curve for

wind speed values from zero to 25 m/s. The value of one is chosen as for high wind

speeds also wind turbines experiencing a reduced wind speed would attain nominal

power. For low wind speeds the setting to a value of one only occurs for wind speeds

below cut-in wind speed which do not have any effect on the power output. The

final power efficiency curves are achieved by taking the mean of the power efficiency

curves of the years 2015 and 2016. Time steps for which the efficiency reaches values

above one, are detected as incorrect and are not further considered in the power

efficiency curves. It is suspected that these values occur due to curtailment of single

turbines for which no data is provided. If for example a first row wind turbine

suffers curtailment while second or third row wind turbines are not the efficiency

could reach values higher than one.

4.2.4 Single wind turbine model

In Section 4.2.3 the methodology for validating the single functionalities for wind

speed height corrections and power output calculations was described. In contrast

to these validations the single wind turbine model is validated by full simulations

from reanalysis wind speeds until the power output of a wind turbine. The data

used for the validation is derived from time series of the wind farms BE, BNW and

BS and was processed as described in Section 3.3 to attain a power output time

series representing a single wind turbine that does not experience wake losses (first

row time series).

The simulations run for the validation of the single wind turbine model are shown in

Table 4.6. The model is validated for both weather data sets. Concerning wind speed

and density calculations the same methods as in the validation of the power curve

smoothing and wake losses functionalities (see Section 4.2.3) are chosen: for the wind

speed height corrections the logarithmic wind profile is used and as open FRED wind

speed data height the height closest to hub height is selected. The density, needed for

the Cp-curve and density corrected power curve, is calculated with the ideal_gas()

function for which the temperature is derived by the linear_gradient() function.
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Table 4.6: Simulations run for the validation of the single turbine model

Name Function Density correction

P-curve power_curve no
Cp-curve power_coefficient_curve no
P (d.-c.) power_curve yes

4.2.5 Wind farm model

The simulations for the wind farm model validation are carried out with different

functionalities that are listed in Table 4.7. Power efficiency curves are only available

for three wind farms (see Section 4.2.3) and during the simulation of wake losses

in this work their application only leads to minor improvements compared with the

dena mean wind efficiency curve (see Section 5.1.4). Therefore, only the dena mean

wind efficiency curve and a constant efficiency (80 % like in Section 4.2.3) are tested

here. As in the evaluation of the smoothing functionalities for power curves the

SP approach does not perform well (see Section 5.1.3) this method is not applied.

However, the TI method leads to an improvement for some wind farms. Therefore,

a combination of the dena mean wind efficiency curve with power curves smoothed

with the TI method is examined. Furthermore, in order to estimate whether the

application of these new functionalities improves simulation results, in one simulation

the power output of the single wind turbines is simply aggregated to a wind farm

power output (Agg.). All simulations described are carried out with both weather

data sets. Like in the validation of the single wind turbine model the logarithmic

wind profile and power curves are used for the calculations while open FRED wind

speeds are taken from a data height closest to hub height.

Table 4.7: Characteristics of simulations run for the validation of the wind farm model

Name Wake losses Smoothing

Const. Constant efficiency of 80 % -
Dena Mean efficiency curve (dena) -
Dena-TI Mean efficiency curve (dena) TI
Agg. - -

4.2.6 Influence of weather data

The evaluation of the influence of the weather data is done by firstly evaluating

differences between wind speed height corrections with the two weather data sets
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and secondly and thirdly by comparing the results for single wind turbine and wind

farm feed-in simulations.

Concerning the wind speed height corrections simulations from Section 4.2.3 depicted

in Table 4.8 are run for both weather data sets.

Table 4.8: Characteristics of simulations run for the evaluation of the influence of weather data
on wind speed calculations

Name Function Special parameters
Weather data height [m]
open FRED MERRA

Log logarithmic_profile() - 100 or 80 (BNW) 50
H hellman() - 100 or 80 (BNW) 50
H2 hellman() α = 1/7 100 or 80 (BNW) 50

Log. Interp.
logarithmic_interpolation_

-
100, 120 or

-
extrapolation() 10, 80 (BNW)

Concerning the single wind turbine model results are taken from the simulations

depicted in Section 4.2.4 (Table 4.6) while respectively results for the wind farm

model are taken from simulations described in Section 4.2.5 (Table 4.7).
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5
Simulation results

This chapter presents the results of the simulations described in Chapter 4. Sec-

tion 5.1 deals with results from simulations for the validation of single functional-

ities. Section 5.2 then focuses on the results from single wind turbine simulations

while Section 5.3 presents results from wind farm simulations. This chapter ends

with results of simulations evaluating the influence of the weather data on simulation

results in Section 5.4.

5.1 Validation of single functionalities

As mentioned before the Windpowerlib was validated by examining single func-

tionalities as well as simulations of a single wind turbine and a wind farm. This

section presents the results of the validation of single functionalities. The results

of simulations with different wind speed height correction functions are depicted

in Section 5.1.1 while those of simulations with different power output calculation

functions are shown in Section 5.1.2. Section 5.1.3 deals with simulation results of

power curve smoothing and Section 5.1.4 with those of functionalities considering

wake losses.

5.1.1 Height correction of wind speed data

In this section the results of simulations analyzing the performance of the wind

speed height correction functionalities when extrapolating wind speeds from different

heights to hub height are presented. The simulated wind speed time series are

compared with the measured first row wind speed time series (see Section 3.3.2).
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Figure 5.1 shows the statistical metrics of the hourly time series calculated with

different methods from different wind speed data heights averaged over the years

2015 and 2016. When comparing these statistical metrics it can not clearly be said
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Figure 5.1: Statistical metrics of hourly wind speed time series calculated with different methods
(average of 2015 and 2016)

that one of the wind speed heights leads to the best results. In the simulations of WF

BE wind speeds from 80 m result in the lowest RMSE whereas for the other wind

farms wind speeds from 10 m perform best with one exception (Log 10 of WF BS).

It should be kept in mind that the hub heights of the wind turbines of WF BNW are

different (60 m) from the turbine hub heights of the wind farms BE and BS (105 m).

However, the calculations for the latter two wind farms do not deliver corresponding

results, either. Another remarkable result is that the logarithmic interpolation (Log.

interp.) between 100 and 120 m (WF BE and BS) leads to higher RMSE than other

functions with weather data heights of 80 and 100 m. For wind farm BNW, that

comprises turbines with hub heights of 60 m, the Log. interp. between 10 m and

80 m attains lower RMSE which might be explained by the hub heights being further

away from the weather data heights.

The mean biases of the time series help to understand whether errors balance out

over a period of time. In Figure 5.1 it can be seen that mean biases vary between
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5.1 Validation of single functionalities

about -0.9 m/s and +1.3 m/s while simulations with a data height of 10 m are

the only that result in negative values (WF BE and H2 in WF BS). The mean

biases of WF BE are far lower than the ones of the other wind farms. This means

that the errors made in simulations of WF BE vary more between negative and

positive values, which can balance out over time, in comparison to the other wind

farms. From Figure 5.1 it is evident that for all height correction functionalities the

correlation of the time series calculated with wind speed data from a 10 m height

is worse than the correlation of the time series calculated with other heights. The

Pearson correlation coefficient of the simulations with a logarithmic interpolation

lies in between these values or at the same level with 80 m and 100 m data height

simulations with the other methods.

The correlations of the calculated hourly wind speed time series with measured time

series of WF BE in 2015 are illustrated in Figure 5.2 where the logarithmic wind

profile with data heights of 10 m, 80 m and 100 m and logarithmic interpolation were

applied. It can be seen that the comparatively worse correlation of the simulation

with a data height of 10 m origins from a underestimation of wind speeds between

about two to eight m/s.
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Figure 5.2: Correlation of hourly wind speed time series calculated with different methods with
measured time series for wind farm BE in 2015

It was observed earlier that the performance of simulations with different weather

data heights was ambivalent for wind farms BE and BS although the hub heights of

their wind turbine are the same and they, thus, should be comparable. A possible
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reason for that could be shading from other wind turbines in the surroundings of

the wind farms as described in Section 3.2. Therefore, the same simulations were

compared with another measured first row wind speed time series with less data

points that were selected from only western (WF BS) and north-western (WF BE,

WF BS) wind directions. Figure 5.3 shows the average relative RMSE from 2015

and 2016 for these simulations. It is evident that now simulations with a data height

of 10 m lead to the highest RMSE for each functionality. As the available amount

of time steps was strongly reduced by this selection from around 27000 (WF BE) to

40000 (WF BS) to about 8000 (WF BS) to 9000 (WF BE) (about 65 to 80 %) these

time series were not used for validations in this thesis.
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Figure 5.3: Relative RMSE of hourly wind speed time series calculated with different methods
with restricted data points averaged over 2015 and 2016

In further simulation cases the logarithmic wind profile is used for the height cor-

rection of wind speeds as it is commonly used and the performances of the different

functions are very similar. Concerning open FRED weather data the data height

closest to hub height is used as it is assumed that most users would decide on that.

5.1.2 Power output calculations

The power output calculation functionalities are validated by using measured wind

speeds to exclude errors from the reanalysis wind speeds and height corrections

(see Section 4.2.3). Only data needed for density calculations for the Cp-curve and

density corrected power curve approach are taken from the weather data.
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To compare the RMSE of the different power output calculation methods Table 5.1

shows their relative RMSE as an average taken from all 24 simulated wind turbines

for hourly and monthly resolutions in the years 2015 and 2016. Simulations with Cp-

curves attain the best results. The results of simulations run with density corrected

power curves are slightly better than those for power curves. Compared to the

hourly time series the relative RMSE of monthly time series is about eight to ten

percentage points lower for the Cp-curve approach and about six to eight percentage

points for the remaining approaches. This means that errors made by simulations

with Cp-curves cancel out over time to a greater extend than errors of simulations

with the other methods.

Table 5.1: Relative RMSE (average of all turbines) in % of power output simulations with different
functionalities

Temporal Cp P P (d.-c.)
Year resolution MERRA open FRED - MERRA open FRED

2015 hourly 17.126 16.556 20.965 20.808 19.908
2015 monthly 9.264 8.812 14.106 14.045 13.175
2016 hourly 19.078 18.622 23.153 22.871 22.080
2016 monthly 9.911 9.430 15.095 15.017 14.112

Table 5.2 shows the correlations of simulated with measured time series for which

an average was taken from all wind turbines to get an overview. It is evident that

all simulations produce strong correlations.

Table 5.2: Pearson correlation coefficient (average of all turbines) of power output simulations
with different functionalities

Temporal Cp P P (d.-c.)
Year resolution MERRA open FRED - MERRA open FRED

2015 hourly 0.990 0.991 0.987 0.988 0.989
2015 monthly 0.998 0.998 0.996 0.998 0.998
2016 hourly 0.988 0.989 0.986 0.986 0.987
2016 monthly 0.997 0.997 0.993 0.997 0.997

Instead of looking at the mean bias, the annual energy production is evaluated in

this section. To get an overview at one glance Table 5.3 illustrates the deviations

of the calculated from the measured annual energy output as an average of all wind

turbines. Using power curves or density corrected power curves leads in average to

an underestimation of about 13 % which is around eight percentage points higher

than the average underestimation resulting from Cp-curves. Tables A.2 and A.3

in the Appendix A.2 show the measured and calculated annual energy output and
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Table 5.3: Deviation (average of all turbines) from measured annual energy output in % - negative
values imply underestimation

Cp P P (d.-c.)
Year MERRA open FRED - MERRA open FRED

2015 -5.72 -4.68 -12.77 -13.10 -12.08
2016 -5.29 -4.22 -13.56 -13.75 -12.68

deviations from the measured output of all wind turbines simulated with open FRED

data.

5.1.3 Smoothed power curves

This section is subdivided into the paragraphs Parameters and Validation like Sec-

tion 4.2.3 where the methodology of validating the smooth_power_curve() function

was described.

Parameters

The parameters of the smooth_power_curve() function are examined by evaluating

smoothed power curves of an Enercon E82 representative for all turbine types in this

thesis as results are very similar.

The result of smoothing an Enercon E82 power curve with three different block

widths is shown in Figure 5.4. The power curves smoothed with 0.1 m/s and 0.5 m/s

are concurring whereas the one smoothed with a block width of 1 m/s falls from cut-

out wind speed down to zero in steps. The same occurs for all power curves evaluated

independently from the standard deviation method and wind speed range. Thus, a

block width of 1 m/s is not recommended. Knorr [2016, p. 107] uses a block width

of 0.1 m/s but does not give any specific reason for that. As the power curves tested

here are concurrent for 0.1 m/s and 0.5 m/s and as the latter would result in a lower

computational time a block width of 0.5 m/s will be used for further power curves

smoothing in this thesis.
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Figure 5.4: Original and with three different block widths smoothed power curve of an Enercon
E82 (wind speed range: 15 m/s, TI method)
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Figure 5.5: Original and with four different wind speed ranges smoothed power curve of an
Enercon E82 (block width: 0.5 m/s, TI approach)

Figure 5.5 presents the same power curve smoothed with four different wind speed

ranges and a block width of 0.5 m/s. The power curve resulting from a smoothing

with a wind speed range of 20 m/s covers the curve calculated with a wind speed

range of 15 m/s. The power curve smoothed with a wind speed range of 5 m/s does
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not reach nominal power and shows a sharp bend at turning to zero. This value

was recommended as a minimum in the work of Nørgaard and Holttinen [2000, p.

3] (see Section 2.4.2) but did not lead to convincing results here. The power curve

smoothed with 10 m/s shows a less sharp bend when turning to zero than the one

smoothed with 5 m/s. As smoothed power curves shown in the work of Knorr [2016,

p. 107] and Nørgaard and Holttinen [2000, p. 4] do not bend sharply to zero a wind

speed range of 15 m/s is selected for further simulations in this thesis.

In order to compare the two standard deviation methods Figure 5.6 illustrates the

E82 power curves smoothed with TI and SP method in comparison with the orig-

inal power curve. The power curve smoothed with SP method deviates for low

wind speeds stronger from the original power curve than the one smoothed with TI

method. Moreover, the power curve smoothed with SP method does not reach nom-

inal power whereas the one smoothed with TI method does reach nominal power at

wind speeds from around 15 to 18 m/s. For wind speeds greater than cut-out wind

speed the power curve smoothed with TI falls faster (with at first higher gradient)

to zero than the other curve.
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Figure 5.6: Original and with different standard deviation methods smoothed power curve of an
Enercon E82
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Validation

The aim of the simulations with smoothed power curves while neglecting wake losses

is to analyze whether the application of smoothed power curves has a positive effect

on the simulation results compared to simple aggregation. Moreover, it is exam-

ined whether the fluctuation (standard deviation) of measured time series can be

represented well by the simulated time series.

Table 5.4 reveals that for the SP method the overestimations of annual energy out-

puts is increased in comparison to simple aggregation. For the TI method the over-

estimation is increased to a smaller extent for three wind parks while it is reduced

for the wind parks BNE and SH.

Table 5.4: Annual energy evaluation of simulations with different smoothing approaches (mean
of 2015 and 2016)

measured TI SP Agg.
[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

WF BE 27839.00 19.00 33114.69 22.35 34039.79 18.53 32987.16
WF BNE 39069.95 34.80 52664.87 43.25 55968.13 35.58 52969.36
WF BNW 4315.78 51.15 6479.63 57.86 6764.27 49.32 6402.39
WF BS 35370.39 32.69 46848.29 35.42 47790.30 32.49 46788.44
WF SH 24819.44 11.41 27631.47 12.28 27885.55 12.25 27822.07

The standard deviation of measured feed-in time series and of feed-in time series

calculated with different approaches in hourly resolution is illustrated in Figure 5.7

as an average of the years 2015 and 2016. The results of the monthly time series

are overall lower but the relationship stays similar. All numbers can be looked up

in Table A.4 in the Appendix A.3. From Figure 5.7 it is evident that the standard

deviation of the feed-in time series is reduced more by the SP method than by the

TI method when being compared with simple aggregation. While in case of WF SH

and SP the standard deviation of the measured time series is underestimated it is

overestimated in the remaining simulations.

The correlations of simulated with measured time series are examined with the help

of Figure 5.8 which presents the Pearson correlation coefficient of the calculated

hourly time series in average of the years 2015 and 2016. The correlations of time

series calculated with SP smoothed power curves are slightly lower than the corre-

lations of the other time series. Time series with TI smoothed power curves attain

higher correlations than with SP smoothed power curves and for WF BE reach the

same correlation as aggregated time series. The correlations of monthly time series
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Figure 5.7: Standard deviation of measured feed-in time series and feed-in time series calculated
with smoothed power curves (different methods for standard deviation of Gauss distribution) and
calculated with a simple aggregation of wind turbine feed-in in hourly resolution. (average of 2015
and 2016)

is overall higher and the differences between the methods lower as can be recognized

from Figure A.1 in the Appendix A.3.
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Figure 5.8: Pearson correlation coefficient of hourly time series calculated with different smooth-
ing approaches and with aggregation approach (average of 2015 and 2016)
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5.1.4 Wake losses

This section presents, firstly, power efficiency curves that were calculated for specific

wind farms and, secondly, simulation results of the simulations that were listed in

Table 4.5 in Section 4.2.3.

Calculated power efficiency curves

Figure 5.9 shows the power efficiency curves that were generated for WF BE, WF

BNW and WF BS as described in Section 4.2.3. Additionally, the mean wind effi-

ciency curve of the ”dena-Netzstudie II“ and an extremely deviating curve calculated

by Knorr [2016] are illustrated.
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Figure 5.9: Calculated power efficiency curves, mean wind efficiency curve of ”dena-Netzstudie
II“ [Kohler et al., 2010] and extremely deviating wind efficiency curve of Knorr [2016]

It should be kept in mind that wind efficiency curves are applied to wind speed

time series and, therefore, have a stronger effect on the power output than power

efficiency curves that are applied to the power output. Studying the different curves

in Figure 5.9 it is noticed that the power efficiency curves are far more fluctuating

than the wind efficiency curves. Concerning the effect of the curves it is clear that

the extremely deviating wind efficiency curve of Knorr [2016] would lead to a higher

reduction of the feed-in than the calculated power efficiency curves. This cannot

be declared on first sight for the dena mean wind efficiency curve as its efficiency
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values are lower but will have a stronger effect on the power output due to the wind

speed being included to the power of three. Therefore, in the next section results of

simulations with the different curves are presented.

Simulation results

The annual energy output of the simulations and deviations from the measured

annual energy output are shown as an average of both years in Table 5.5. It can

be seen that the deviations for all wind farms are highest for the simulations that

did not consider any wake losses. This was expected beforehand and is a reason for

the implementation of wake losses into the Windpowerlib. Moreover, the deviations

of simulations with specifically for wind farms calculated power efficiency curves is

for WF BE about one and for WF BS about three percentage points lower than the

deviation of simulations with the dena mean wind efficiency curve. In contrast to

that, for WF BNW deviations are about five to seven percentage points higher when

using a power efficiency curve. Furthermore, the simulations with a constant wind

farm efficiency of 80 % result in the lowest deviations, however, the annual energy

output of WF BE is underestimated.

Table 5.5: Annual energy evaluation of simulations with different wake losses methods (average
of 2015 and 2016) - negative deviations imply underestimation, positive deviations overestimation

measured Dena Calc. Const. No losses
[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

WF BE 27839.00 4.74 29151.82 3.83 28897.06 -5.18 26389.73 18.53 32987.16
WF BNW 4315.78 32.17 5669.93 37.79 5909.41 19.45 5121.91 49.32 6402.39
WF BS 35370.39 18.24 41781.22 15.87 40943.73 5.99 37430.75 32.49 46788.44

Figure 5.10 displays the statistical metrics of the hourly time series calculated with

different wake losses methods averaged over 2015 and 2016. The figure reveals that

the highest RMSE per wind farm results from simulations not considering wake

losses at all, which was expected beforehand. Further expected was a lower RMSE

for simulations with the calculated power efficiency curves in respect of simulations

with the dena mean wind efficiency curve which is confirmed in Figure 5.10 for WF

BE and WF BS but not for WF BNW. The lowest RMSE is reached by the constant

efficiency. The Pearson correlation coefficient in Figure 5.10 is for all methods very

similar. For WF BE it is about 0.7 and for the other wind farms about 0.79 which can

be classified as upper middle correlations (see Section 4.2.1). The statistical metrics

of all temporal resolutions are displayed in Tables A.5 and A.6 in the Appendix A.4.

From there it is known that time series in half-hourly resolution have slightly lower
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Figure 5.10: Statistical metrics of hourly feed-in time series calculated with different wake losses
methods (average of 2015 and 2016)

correlations while monthly time series reach strong correlations of 0.9 to 1 depending

on the wind farm.

5.2 Single wind turbine simulations

The single wind turbine model is evaluated by comparing the simulated power out-

put of wind turbines with measured first row power output time series. For the

evaluation of the annual energy output Tables 5.6 and 5.7 show the measured and

calculated annual energy output and the deviations between them as an average of

2015 and 2016 for both weather data sets. The measured power output varies for

the different weather data sets as not considered time steps (due to the threshold

for the resampling to lower temporal resolutions, see Section 3.3) differ from data

set to data set.

Overall high overestimation takes place. The simulations of first row wind turbines

of WF BNW and WF BS lead to much higher overestimations than simulations of

first row wind turbines of WF BE which might be explained by the denser surround-

- 67 -



Chapter 5 Simulation results

Table 5.6: Annual energy evaluation of wind turbine simulations with different approaches and
open FRED data (average of 2015 and 2016)

measured P Cp P (d.-c.)
[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

BE 2436.95 11.43 2714.90 19.14 2901.92 12.35 2736.95
BNW 2257.27 50.35 3386.24 72.31 3880.33 52.35 3431.18
BS 2260.17 55.92 3512.23 66.86 3756.10 57.22 3540.60

Table 5.7: Annual energy evaluation of wind turbine simulations with different approaches and
MERRA data (average of 2015 and 2016)

measured P Cp P (d.-c.)
[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

BE 2637.98 39.81 3687.91 47.90 3900.44 40.58 3707.70
BNW 2282.63 76.34 4025.62 100.36 4572.82 78.34 4070.85
BS 2355.23 113.78 5016.29 125.28 5283.33 114.56 5033.74

ings of the wind farms which were mentioned in Section 3.2. It is evident that for

both weather data sets the deviation from the measured annual energy output is

lowest for the power curve method, followed closely by the density corrected power

curve method and the Cp-curve method. Moreover, in all cases simulations with

open FRED weather data attain lower deviations than simulations with MERRA

weather data.

It can be observed from Figure 5.11 that hourly time series simulated with power

curves reach RMSE of about 0.35 to 0.45 MW for open FRED data (about 0.4 to

0.6 MW for MERRA, see Figure A.2 in the Appendix A.5) while RMSE of simula-

tions with density corrected power curves only lie slightly above these values. The

Cp-curve simulations lead to the highest RMSE with about 0.41 to 0.47 MW for

open FRED data (about 0.48 to 0.61 MW concerning MERRA). In relative num-

bers the RMSE for the power curve approach reaches from about 70 to 115 % for

open FRED data (about 80 to 155 % for MERRA data).

All statistical metrics of the simulations can be looked up in Tables A.7 to A.10 in

the Appendix A.5. Looking at these tables it can be seen that the correlation for the

simulations vary for half-hourly and hourly resolution from 0.7 to 0.8 which means

that middle correlations, close to strong correlations, are attained. The monthly

time series reach strong correlations with a Pr from 0.93 up to 0.97.
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Figure 5.11: Statistical metrics of hourly feed-in time series of single wind turbines calculated
with open FRED weather data (average of 2015 and 2016)

5.3 Wind farm simulations

The results of the wind farm feed-in simulations depicted in Table 4.7 are presented

in this section. Table 5.8 provides their deviations from the measured annual energy

output averaged over the years for both weather data sets. It can be seen that

the deviations of simulations with the dena mean wind efficiency curve are in most

cases lower if it is applied without power curve smoothing. For WF SH the power

curve smoothing improves the results which is also the case for the simulation of WF

BS with MERRA data. The application of a constant efficiency of 80 % leads to

lower deviations compared with the other methods. However, three simulations with

constant efficiency result in underestimations which in two cases leads in absolute

numbers to a higher deviation from the annual energy output. Compared to simple

power output aggregation (Agg.) all methods improve the results.

The statistical metrics of the simulations with open FRED data are illustrated in

Figure 5.12 where an average over the years 2015 and 2016 is shown. Although the

deviation from the annual energy output is lower for simulations with the dena mean

wind efficiency curve without smoothing (Dena) hourly time series generated with
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Table 5.8: Deviations from the measured annual energy output in % of wind farm simulations
(average of 2015 and 2016)

Agg. Const. Dena Dena-TI
MERRA open FRED MERRA open FRED MERRA open FRED MERRA open FRED

WF BE 46.18 18.53 16.94 -5.18 30.58 4.74 30.94 5.81
WF BNE 83.84 35.58 46.94 5.82 63.64 15.98 65.11 18.80
WF BNW 75.06 49.32 40.05 19.45 55.87 32.17 57.76 34.44
WF BS 75.19 32.49 40.15 5.99 58.61 18.24 58.19 19.14
WF SH 23.43 12.25 -1.25 -10.20 13.41 3.37 13.20 2.91

smoothing (Dena-TI) lead to lower RMSE. The mean biases of Dena-TI simulations

are higher than those of Dena simulations which is why Dena simulations attain

lower deviations from the annual energy output. The constant efficiency leads to

the lowest RMSE but also induces underestimation and reaches lower correlations.
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Figure 5.12: Statistical metrics of hourly feed-in time series of wind farms calculated with
open FRED data (average of 2015 and 2016)

5.4 Simulations comparing the weather data sets

The results of simulations concerning the influence of different weather data sets are

presented in three sections. Section 5.4.1 shows results of simulations revealing the
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influence on wind speed height corrections, Section 5.4.2 presents results concerning

the influence on single wind turbine power output simulations and Section 5.4.3

displays results concerning the influence on wind farm power output simulations.

5.4.1 Influence on wind speed height corrections

In Section 5.1.1 the results of simulations evaluating wind speed height correction

functionalities with different heights of open FRED weather data were presented.

This section also presents simulations concerning wind speed height corrections,

however, it is focused on differences in the performance of the different weather data

sets. In the simulations of which the results are shown in this section the closest

data height of open FRED wind speeds is used.

Figures 5.13 to 5.15 compare the relative RMSE, the mean bias and the Pearson cor-

relation coefficient of all wind speed height correction simulations for both weather

data sets where an average is taken of the two years. For all height correction meth-

ods and wind farms the relative RMSE of simulations with open FRED weather data

is lower than with MERRA weather data as is evident from Figure 5.13. However,

also with open FRED data relative RMSE from around 30 to 45 % occur.
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Figure 5.13: Relative RMSE of hourly time series of wind speed simulations (average of 2015
and 2016)

These errors result in an overestimation of the annual mean wind speeds of about

0.3 to 1.2 m/s which is indicated by the mean biases in Figure 5.14. These mean
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biases of simulations with open FRED data give hint on a lower mean overestimation

comparing to MERRA data with mean biases of about one to more than 2 m/s.

Observing the Pearson correlation coefficients in Figure 5.15 it can be seen that

hourly time series simulated with MERRA data attain higher correlations than time

series calculated with open FRED data.
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Figure 5.14: Mean bias of hourly time series of wind speed simulations (average of 2015 and
2016)
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Figure 5.15: Pearson correlation coefficient of hourly time series of wind speed simulations (av-
erage of 2015 and 2016)
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5.4.2 Influence on single wind turbine power output simulations

This section examines the results of the single wind turbine simulations depicted in

Section 4.2.4 concerning the different weather data sets. The deviations from the

measured annual energy output are overall lower for simulations with open FRED

than for simulations with MERRA data as was already observed in Section 4.6. All

deviations averaged over the years can be seen in Table 5.9 where positive values

indicate that the annual energy output is overestimated in the simulations. The

overestimations by MERRA data are for the first row wind turbines of WF BE and

WF BNW about 27 percentage points higher than overestimations by open FRED

and about 58 percentage points respectively for WF BS. The comparatively high

Table 5.9: Deviation from the measured annual energy output in % of single turbine simulations
with different power output methods (mean of 2015 and 2016) - positive values imply overestimation

Cp P P (d.-c.)
MERRA open FRED MERRA open FRED MERRA open FRED

BE 47.90 19.14 39.81 11.43 40.58 12.35
BNW 100.36 72.31 76.34 50.35 78.34 52.35
BS 125.28 66.86 113.78 55.92 114.56 57.22

overestimations resulting from simulations with MERRA data can be explained by

the higher overestimation of wind speeds compared to open FRED data (see Fig-

ure 5.14).

As the power curve approach performed best in the single wind turbine model for

both weather data sets (see Section 5.2) the statistical metrics are compared for this

approach only and are illustrated in Tables 5.10 and 5.11.

Table 5.10: Evaluation of single wind turbine feed-in time series in 2015 calculated with the power
curve approach

RMSE [MW] RMSE [%] Pearson coeff. mean bias [MW]

MERRA open FRED MERRA open FRED MERRA open FRED MERRA open FRED

BE hourly 0.47 0.41 79.34 68.42 0.75 0.74 0.23 0.07

monthly 0.26 0.09 41.18 14.47 0.98 0.98 0.26 0.08

BNW hourly 0.42 0.36 114.34 96.66 0.83 0.79 0.28 0.16

monthly 0.29 0.17 80.37 47.07 0.98 0.96 0.28 0.16

BS hourly 0.61 0.45 146.66 108.30 0.76 0.76 0.44 0.22

monthly 0.45 0.26 106.40 57.96 0.95 0.93 0.44 0.23
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Table 5.11: Evaluation of single wind turbine feed-in time series in 2016 calculated with the power
curve approach

RMSE [MW] RMSE [%] Pearson coeff. mean bias [MW]

MERRA open FRED MERRA open FRED MERRA open FRED MERRA open FRED

BE hourly 0.44 0.41 84.87 78.07 0.76 0.71 0.21 0.07

monthly 0.22 0.14 41.36 24.57 0.95 0.90 0.21 0.08

BNW hourly 0.37 0.35 116.56 110.28 0.83 0.79 0.24 0.19

monthly 0.24 0.20 78.25 61.74 0.98 0.95 0.24 0.19

BS hourly 0.58 0.44 170.23 129.39 0.76 0.72 0.41 0.21

monthly 0.42 0.25 123.74 67.45 0.99 0.97 0.41 0.22

The RMSE of hourly time series is lower for open FRED simulations of about five to

26 % and of monthly time series of about 17 to 65 % compared to simulations with

MERRA data. The stronger deviation of the monthly time series can be explained

by the lower mean bias of open FRED simulations which stand for better balancing

out over time. The correlations of open FRED simulations are for hourly time series

about one to seven percent lower and for monthly time series zero to five percent

than the correction of MERRA simulations.

5.4.3 Influence on wind farm power output simulations

The influence of weather data on the simulation of the annual power output of wind

farms was already shown in Table 5.8 in Section 5.3. It can be observed that MERRA

data leads to far higher overestimations than open FRED weather data. Only for

the constant efficiency the MERRA data performs better at WF SH.

In Figure 5.16 it can be observed that the relative RMSE of open FRED simulations

are lower compared to MERRA simulations apart from WF SH where MERRA

attains lower relative RMSE.

Simulations with open FRED data reach far lower mean biases than simulations

with MERRA data except for WF SH and WF BE with a constant efficiency where

the absolute mean biases are higher at simulations with open FRED data (see Fig-

ure 5.17). Like in the wind speed and single wind turbine simulations wind farm

feed-in time series calculated with open FRED data lead to lower correlations com-

pared to simulations with MERRA data (see Figure 5.18).
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Figure 5.16: Relative RMSE of hourly feed-in time series of wind farm simulations (average of
2015 and 2016)
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Figure 5.17: Mean bias of hourly feed-in time series of wind farm simulations (average of 2015
and 2016)
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Figure 5.18: Pearson correlation coefficient of hourly feed-in time series of wind farm simulations
(average of 2015 and 2016)
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6
Discussion

The objective of this thesis is to implement functions into the open source library

Windpowerlib that abolish the limitations of Windpowerlib v0.0.4 named in Sec-

tion 1.4. Moreover, it is aimed to evaluate feed-in time series simulated with dif-

ferent methods, to validate single functionalities and to examine the influence of

weather data on simulation results. The first aim was fulfilled by the implementa-

tion of additional functionalities through which a modelling of wind farms and wind

turbine clusters was made possible (see Section 4.1.2). The second aim was achieved

by validating simulated time series with measured feed-in time series. As single

functionalities the height correction methods for wind speed data, power output cal-

culations, power curve smoothing and the application of wake losses were evaluated.

In addition to that, the influence of weather data on the simulation results was ex-

amined. The performance of the validated functionalities is discussed in Section 6.1

and the influence of the weather data on the results in Section 6.2. Section 6.3 gives

hints on the trustworthiness of the results and Section 6.4 deals with the limitations

of the Windpowerlib.

6.1 Performance of the functionalities

In this section the performance of the functionalities of the Windpowerlib is dis-

cussed. Section 6.1.1 evaluates the performance of wind speed height correction

functionalities, Section 6.1.2 examines power output calculations functions, Sec-

tion 6.1.3 deals with the smoothing of power curves and Section 6.1.4 focuses on

functionalities for considering wake losses.
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6.1.1 Wind speed height correction functionalities

The functionalities for wind speed height corrections were evaluated by comparing

simulated time series using open FRED wind speeds at different heights with the

first row wind speed time series of three wind farms that were obtained from mea-

sured data (see Section 3.3.2). A significant difference in performance between the

logarithmic wind profile and the Hellman equation could not be detected and was

not the aim of this evaluation. However, from Section 2.1.1 it is known that the

Hellman equation is likely to underestimate wind speeds more strongly than the

logarithmic wind profile. Therefore, it may be preferred to use the logarithmic wind

profile, although it may not lead to the best results for all locations and situations.

Logarithmic interpolation can be an alternative when the wind speed data is avail-

able at two heights. The results in Section 5.1.1 showed a worse performance of the

logarithmic interpolation compared to the other functionalities when hub heights

are close to the weather data heights (WF BE, WF BS). However, for the wind farm

with hub heights further in between the data heights (WF BNW) it resulted in a

lower RMSE (and mean bias) than the other functions. This seems logical as ex-

trapolating over a shorter range implies less uncertainty. Moreover, when correcting

wind speeds over a longer range the interpolation between two data heights provides

certainty.

The performance of wind speed height corrections was rather influenced by the wind

speed data height than by the functionality chosen for the calculations. Concerning

the different heights of the weather data it was found out in Section 5.1.1 that

height corrections from 80 m gave better results than height corrections from 100 m.

This was also the case for hub heights of 105 m although the wind speed data

height of 100 m is closer to hub height. An explanation for that could be a general

overestimation of wind speeds which cancel out with the underestimation induced by

the functionalities. Concerning the MERRA weather data Staffell and Pfenninger

[2005, p. 31] state that it produces about 60 % overestimated capacity factors in

Germany and Denmark. Capacity factors show the relation between the average

(annual) feed-in and the installed power. Therefore, they should not only origin

from errors in the weather data but for instance also from a technical availability

lower than 100 %. However, the overestimation of capacity factors of 60 % should

indicate a fairly high overestimation of MERRA wind speeds. As for the generation

of the open FRED weather data MERRA data is used in the COSMO model this

high overestimation of wind speeds may also be present in the open FRED data.

This was confirmed by evaluations within the open FRED project. The even lower
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RMSE from simulations with a data height of 10 m may result from wake losses

induced from wind turbines standing close to BNW and BS. This was shown in

Figure 5.3 where only wind speeds not being influenced by these surroundings were

considered (selected by wind direction). Thus, it is not recommended to use a data

height as far away as 10 m when closer data heights are available. However, using

a slightly lower height can lead to better results. In this thesis this was only tested

on three wind farms which means that this finding might not be generally valid.

Nevertheless, as mentioned earlier, wind speeds are usually overestimated by the

weather models which leads to the expectation of similar results for other wind

farms.

6.1.2 Power output calculation functionalities

The power output calculation functionalities of the Windpowerlib were validated

with measured feed-in time series of 24 wind turbines in three wind farms. The

power output of these wind turbines was calculated from measured wind speed time

series instead of reanalysis wind speeds in order to exclude errors from the weather

data or made by height corrections. The power output of the wind turbines was

in average underestimated by about five percent when using Cp-curves and about

13 % when using power curves or density corrected power curves as is known from

Section 5.1.2. Such a great difference of performance between Cp-curves and density

corrected power curves was not expected. As both methods take the site specific

air density into consideration it was contemplated as likely that they would perform

similarly. This questions the density corrected power curve approach and should be

further examined.

Although the results showed that Cp-curves perform better than power curves when

examined as single functionalities they performed differently in the validation of the

single wind turbine model (see Section 5.2). In that section the performance of

calculating the power output of a single wind turbine with reanalysis wind speeds

was evaluated. It was explained earlier that reanalysis wind speeds from the weather

data sets are generally overestimated. From Figure 5.1 a relative RMSE of about

30 % (WF BE) of the wind speed time series can be observed. As wind speed has

an effect to the power of three on the power output it is not surprising that in

average the power output was overestimated in the single wind turbine simulations.

As power curves led to higher underestimations than Cp-curves when applied as

single functionality they performed better when they were combined with the highly
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overestimated wind speeds (see Section 5.2). As wind speeds seem to be generally

overestimated this should be the case for other locations, too, which is why power

curves should lead to better results in wind feed-in simulations than Cp-curves.

6.1.3 Smoothing power curve functionality

For the smoothing of power curves appropriate parameters could be identified in

Section 5.1.3 which were set as default values within the Windpowerlib. The sim-

ulations for the evaluation of this function were carried out with these default pa-

rameters. The objective of the simulations was to analyze the effect of smoothed

power curves on the simulation results and to examine whether the fluctuation of

measured time series could be represented well. The results of the simulations in

Section 5.1.3 reveal a bad influence on the annual mean production. In most cases

power curve smoothing led to higher overestimations of annual energy output than

a simple aggregation of power outputs. The influence of the SP method was in all

cases worse than the influence of the TI method. Thus, it was not used in any other

simulations in this thesis. As the roughness length and wind turbine hub heights

are used for calculating a turbulence intensity the TI method depends on site spe-

cific parameters. This could be detected in the results as the performance of TI

depended on the wind farm. However, only in two cases (WF BNE and WF SH) it

led to better results than the simple aggregation. Another explanation for a depen-

dency on the location is a dependency on wind speeds. Looking at the smoothed

power curves in Figure 5.6 it is obvious that the frequency of wind speeds below and

above certain values determine whether compared to simple aggregation a higher

or lower mean power output is calculated. A higher overestimation of the yearly

mean with smoothed power curves means that wind speeds below about 8 m/s (in

case of Figure 5.6) and above cut-out wind speed rather influenced the power output

calculations. The bad effect of smoothed power curves on the annual mean detected

in the results might be prevented by adjusting µ in the Gauss function, which will

be proposed in Chapter 8. As was found out in Section 5.1.3 the fluctuation of

simulated wind farm feed-in time series can indeed be lowered by the application of

smoothed power curves. However, the overall appearance of the wind farm feed-in

time series may usually be more important. Thus, the application of power curves

should only be used if an offset adjustment can be done and validated.
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6.1.4 Functionalities for the consideration of wake losses

For the performance of functionalities considering wake losses three approaches were

compared: (dena) mean wind efficiency curve, power efficiency curves and a constant

wind farm efficiency of 80 %. It should be kept in mind that wind efficiency curves

are applied to wind speed time series while power efficiency curves (and constant

efficiencies) are applied to power curves. Moreover, the power efficiency curves used

in this thesis were calculated specifically for the wind farms on which they were

applied later.

In Section 5.1.4 it was noticed that these calculated power efficiency curves are far

more fluctuating than the wind efficiency curves. This can be explained by the way

the curves were generated. While Knorr [2016, p. 114] and Kohler et al. [2010, p.

100 f.] used wake models in which for frequent wind speed steps efficiencies could

be calculated, in this work the power efficiency curves were calculated by evaluating

measured feed-in time series that do not provide values for all possible wind speeds

and that could contain errors. Furthermore, the mean values of the curves comprise

varying amounts of time steps which leads to a different weighing of incorrect values.

As mentioned before wind efficiency curves and power efficiency curves (and constant

wind farm efficiencies) are applied in different ways. Thus, they cannot be compared

directly with each other. Still, it was aimed to evaluate the effects of these different

curves on the simulation results. In addition to the simulations with these curves a

constant efficiency was used in one simulation to evaluate whether such a simplified

consideration of wake losses would lead to acceptable results. As known from Sec-

tions 5.1.4 and 5.3 a constant efficiency of 80 % led in most cases to lower deviations

from the measured annual energy output and lower RMSE than the other methods.

From first sight these results are surprising. It was expected that a constant effi-

ciency would lead to higher errors as for high wind speeds the constant efficiency

would highly underestimate the power output. A possible explanation for these low

errors are the high overestimations of power output (see Section 5.2). For high wind

speeds the overestimation of the power output could cancel out the underestimation

induced by the constant wind farm efficiency. In some cases a constant efficiency led

to underestimations and in absolute values to higher deviations from the measured

annual energy output. This leads to the assumption that the performance of the

constant efficiency is comparatively good for wind farms for which the dena mean

wind efficiency curve is overestimating the efficiency. When calculating larger re-

gions it is probable that the different efficiencies of the wind farms are in average

met well by the dena mean wind efficiency curve. Furthermore, from Section 5.3
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it is known that the application of a constant efficiency influences the correlation

of the time series negatively and can even lead to lower correlations than a simple

aggregation of wind turbine power outputs. Thus, the dena mean wind efficiency

curve should be preferred over a constant efficiency.

Comparing the results of the dena mean wind efficiency curve with the results of the

calculated power efficiency curves in Section 5.1.4 it becomes clear that there is only

a small difference between their performances. As the power efficiency curves were

specifically calculated from measured feed-in data it was expected to find a greater

difference with a better performance of the power efficiency curves. Furthermore,

the results for the different wind farms are ambiguous. For two of the wind farms

(WF BE and WF BS) the calculated power efficiency curves performed better while

for the third wind farm (WF BNW) the dena mean wind efficiency curve attained

better results. This difference in performance can be seen looking at the behavior of

the power and wind efficiency curves in Figure 5.9. Compared to the other curves

the power efficiency curve of WF BNW rises with a higher gradient and gets closer

to the dena mean wind efficiency curve for wind speeds of about four to 11 m/s.

As the wind speeds influence the power output to the power of three the power

efficiency curve of WF BNW can lead to higher overestimation. The reason for the

different appearance of this power efficiency curve can be found in the site specific

circumstances of this wind farm. As known from Table 3.2 it only comprises two

wind turbines and is by definition of Section 2.3.1 part of a wind farm comprising

more wind turbines. It can be assumed that the influence of the surrounding wind

turbines is stronger than the wake losses being induced from one on the other wind

turbine of WF BNW.

6.2 Influence of the weather data

As known from the simulation results open FRED weather data performed better

than MERRA weather data throughout this thesis concerning the RMSE of time

series and the annual energy output. Moreover, a high influence of the weather

data on the results could be detected. Looking at the statistical metrics of wind

farm simulations in Section 5.4.3 a difference between the weather data sets of up

to about 25 % concerning the RMSE of hourly time series depending on the cal-

culation method and wind farm can be seen. The Pearson correlation coefficient

seems to be less influenced while the mean biases show great differences between

the weather data sets. According to the mean biases errors of time series calculated
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with open FRED weather data cancel out way better than errors made in calcu-

lations with MERRA data. This was confirmed in the deviations from the annual

energy output in Table 5.8 and means that the errors of hourly wind turbine time

series calculated with open FRED data are fluctuating more between positive and

negative values than errors made by MERRA data. An explanation for that could

be the higher overestimation of wind speeds with MERRA data.

Interesting are the results of wind farm simulations for WF SH where MERRA data

led to lower RMSE but to higher mean biases and a higher overestimation in the

annual mean compared to open FRED data. A reason for the comparatively good

performance concerning the RMSE could be that WF SH is located close to the coast

in Schlewsig-Holstein where the land mass does not influence the wind as strongly as

in inland regions in Brandenburg. It is possible that close to the coast the advantage

of the open FRED data having a finer spatial resolution is lower.

As discussed in Section 6.1.1 the data heights at which wind speed data is available

have a stronger influence on the simulation results than the different functionalities

for height corrections.

6.3 Trustworthiness of the results

Concerning the trustworthiness of the results it has to be looked at the wind farms

and their measurement data used in the validation. As described in Section 3.2 some

of the wind farms are surrounded by other wind turbines while others are not. In

simulations of larger areas wind farms would not be defined by ownership but by

the distance between the wind turbines. Therefore, to evaluate the performance of

the Windpowerlib and its functionalities it should rather be looked at those wind

farms being free from surrounding obstacles. For the coastal region WF SH is a

good example as it is not shaded by any other wind turbines. It was mentioned in

Section 3.2 that the wind farm BNW is surrounded by other wind turbines and that

also WF BE and WF BS are shaded from some directions. Of these farms WF BE

is the one shaded least and, therefore, the most reliable. The wind farm BNE in

Brandenburg is not surrounded by other wind turbines. However, it comprises wind

turbines of different hub heights while wind speeds at mean hub height are applied to

the aggregated power curve. This might lead to errors as the wind speed is different

at the wind turbine hub heights. In the ”dena-Netzstudie II“ [Kohler et al., 2010]

this is neglected while Knorr [2016] suggests to correct the power curve wind speeds

before the aggregation (see Section 2.5.1).
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6.4 Limitations of the Windpowerlib

As the Windpowerlib is intended for generating feed-in time series of larger areas

rather than single wind turbines or wind farms simplifying assumptions are made

in the calculation methods. This means that the feed-in of single wind turbines or

wind farms is not simulated in great detail. This is not necessary for larger areas as

the uncertainty about wind turbine types and their locations is too high to go into

such great detail in the calculations.

The performance of the functionalities of the Windpowerlib were validated in this

thesis, however, further validation is needed for the simulation of a higher aggrega-

tion level than wind farms. Moreover, it would be useful to validate the function-

alities for further regions. The locations of the wind farms used for the validation

in this thesis differ from coastal region to flat inland regions, however, it would be

interesting to examine locations with more distinctive topography as this might have

a great influence on the results.
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Conclusion

In this thesis a basic version of the open source model called Windpowerlib was used

as a basis for the implementation of a profound library for generating wind feed-in

time series. The objectives of this thesis were to develop this library in a way to be

able to calculate feed-in time series simulations of wind farms and larger areas and

to validate the various functionalities. It was further aimed to examine the influence

of different weather data sets on the simulation results.

The simulation of wind farms and larger areas was made possible by the implementa-

tion of a functionality for considering wake losses. To apply this functionality it was

further necessary to implement power output calculations by a power curve which

was previously only possible by power coefficient curves. Moreover, additional func-

tions for wind speed height corrections (Hellman equation) and density calculations

(ideal gas equation) and the possibility of a density correction of power curves were

implemented. Furthermore, a functionality dealing with the spatial distribution of

wind speeds was added (smoothing of power curves). Except for the functionalities

for density and temperature calculations all functions were evaluated with measured

feed-in and wind speed time series. Concerning the wind speed and power out-

put functionalities validation time series of three different locations were used while

for the validation of the other functions time series of five different locations were

available.

It was found that the height of the utilized wind speed data strongly influences the

results while the different height correction functionalities performed similarly in

this thesis. It can be inferred that choosing a lower weather data height the gen-

eral overestimation of wind speeds cancels out underestimations induced by height

correction functionalities. Moreover, using logarithmic interpolation between two

data heights led to the best results at one wind farm. For all available power output
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functionalities underestimation of the annual energy output was detected when mea-

sured wind speed data was used. The underestimation was of about eight percent

higher when using power curves or density corrected power curves compared to using

power coefficient curves. In combination, the overestimated wind speeds and the un-

derestimation by the power output calculation functionalities led to overestimations

in wind turbine power output simulations. In this case the performance was best

when using power curves for the power output calculations. For wind farms assessed

as reliable data source in Section 6.3 the annual energy output of wind farms was

overestimated by 4.7 % (in Brandenburg) and 3.4 % (in Schleswig-Holstein) when

applying the dena mean wind efficiency curve (methods: power curve, logarithmic

wind profile, data: open FRED). The overestimations in the simulations of single

wind turbines were slightly higher with an average of 11.4 % for a wind turbine

standing in the first row of the wind farm in Brandenburg (methods: power curve,

logarithmic wind profile; data: open FRED). For both, the simulated wind turbine

feed-in time series and the simulated wind farm feed-in, high Pearson correlation

coefficients of about 0.7 to 0.9 were attained. In comparison with the simple aggre-

gation of the power outputs of wind turbines an improvement could be achieved.

This was observed in the RMSE and the correlation of the time series as well as

in the lower overestimation of annual energy outputs. The latter was reduced by

applying the dena wind efficiency curve (same methods as above) from 18.5 % to

4.7 % (Brandenburg) and from 12.3 % to 3.4 % (Schleswig-Holstein).

Concerning the different weather data sets there was found a high influence on the

simulation results. For example the overestimations of annual energy output of

wind farms (same methods as above) was about 26 (Brandenburg) and about ten

(Schleswig-Holstein) percentage points lower with open FRED data compared to

MERRA data. The differences of the relative RMSE and correlations of the time

series were smaller. This leads to the conclusion that the weather data has an effect

on the canceling out of errors over time. It was further found out that the difference

in performance was lower for the wind farm SH that is located close to the coast

which leads to the supposition that the finer resolution of the open FRED weather

data develops its advantage primarily in inland regions.
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Outlook

The Windpowerlib will continue as open source community project organized at the

Reiner Lemoine Institute and is likely to gain more contributing developers in the

future. It will provide wind feed-in time series for energy systems simulations with

oemof, which is the Open Energy Modelling Framework used at the Reiner Lemoine

Institute. Besides, it can be used as a standalone application.

In this thesis different aspects concerning the simulation of wind feed-in time series

were implemented into the library and evaluated. Nevertheless, there are still ques-

tions remaining that are interesting to be answered. Concerning the validation it is

recommended to examine the model performance on higher aggregation levels, for

instance of federal states in Germany. In connection with that it would be highly in-

teresting to examine and validate an additional approach determining the standard

deviation for the generation of smoothed power curves mentioned in Section 2.4.2.

This alternative method introduced by Nørgaard and Holttinen [2000] takes into

account the dimension of the area over which wind turbines are spread. This might

be very useful for the simulation of wind feed-in of different sized areas. However,

as they state that a further validation of this approach is still needed it should be

validated before implementing it into the Windpowerlib. Moreover, functionalities

for density calculations and temperature height corrections could be validated in the

future. Another additional interesting research could be evaluating the performance

of the functionalities depending on time periods such as seasons or times of day.

Especially for wind speeds it may be advantageous, if existent, to gain knowledge

about their overestimation or underestimation in specific seasons or times of day.

Concerning the development of new functionalities for the Windpowerlib temporal

variability could be an aspect to consider. The temporal resolution of time series

generated by the Windpowerlib is identical with the temporal resolution of the in-
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put weather data. However, for some applications it might be useful to gain finer

temporal resolutions than the hourly (or half-hourly) resolution that is common for

weather data. Another useful functionality could be a height correction of power

curve wind speeds when aggregated power curves of wind farms or clusters compris-

ing wind turbines with varying hub heights are simulated (see Section 6.3 and 2.5.1).

Moreover, it was mentioned in Section 6.1.3 that adjusting the offset (mean) of the

Gauss distribution in the power curve smoothing function may lead to better results.

Optimizing the offset for each wind turbine cluster power curve could be very time

intensive when calculating larger areas. However, if values ofr the offset represent-

ing an area of several weather data points well could be found this could be a great

achievement.

Concerning the power efficiency curves calculated in this work it would be excellent

to find a dependency on wind farm characteristics. However, it should be kept

in mind that for wind efficiency curves, which represent the reduced wind speed

induced by wake losses in a wind farm, a dependency on wind farm characteristics

could not be identified in the literature (see Section 2.3.3). Therefore, it might be

sufficient to find ”classes” of wind farms defined by few characteristics that could at

least estimate the extend of wake losses.

For community modelling projects it is common to deliver tests with the code that

have to successfully run through before changes in the code are accepted to the

project. A development of these tests has already been started for some of the

functionalities. For the successful continuation of the Windpowerlib as open source

community project it is necessary to include tests for all functionalities and modules

contained in the library.
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A.1 Evaluation of wind directions and nacelle positions

This section presents results of an evaluation of wind directions and nacelle positions

of the wind farms BNW and BS (see Section 3.2). For WF BE measured wind direc-

tions are not available. Instead nacelle positions which can have an azimuth error are

used for simulations with these three wind farms after investigating the correlation

and deviation between wind directions and nacelle positions of the wind turbine of

WF BNW and WF BS. Table A.1 shows the Pearson correlation coefficient (Pr) of

wind directions with nacelle positions and the mean biases between these. For an

explanation of the statistical metrics Pr and mean bias see Section 4.2.1. From Ta-

ble A.1 it is evident that all correlations between wind direction and nacelle position

are higher than 0.8 which is classified as strong correlation (see Section 4.2.1). More-

over, apart from BS 11 for all wind turbines the mean bias is lower than 3.5◦. As WF

BE is from the same operator it can be assumed that also for this wind farm nacelle

positions and measured wind directions show similar correlations and mean biases.

BS 11 was not considered in any calculation where wind directions are used. Among

the measured nacelle positions of wind turbine BS 14 negative values were found.

It was assumed that the measurement device wrote down negative values when the

wind direction jumped from 0◦ to wind directions lower than 360◦. Therefore, these

values were adjusted by adding 360◦ which resulted into strong correlations and low

mean biases.
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Table A.1: Pearson correlation coefficient (Pr) of wind directions with nacelle positions and mean
bias between these for wind turbines of WF BNW and WF BS

Wind 2015 2016
turbine Pr Mean bias [◦] Pr Mean bias [◦]

BNW 1 0.90 1.71 0.88 -0.63
BNW 2 0.87 -0.19 0.90 0.57
BS 1 0.90 1.85 0.84 0.59
BS 2 0.90 2.17 0.83 2.63
BS 3 0.85 1.57 0.88 0.84
BS 4 0.92 1.04 0.87 -0.42
BS 5 0.89 1.88 0.89 0.29
BS 6 0.89 0.73 0.86 -1.23
BS 7 0.90 2.07 0.89 -0.64
BS 8 0.88 1.58 0.89 -0.30
BS 9 0.86 0.56 0.88 -0.72
BS 10 0.87 3.39 0.89 -1.69
BS 11 0.90 1.02 0.37 -45.39
BS 12 0.91 2.03 0.89 1.39
BS 13 0.91 0.80 0.89 -1.16
BS 14 0.89 0.03 0.87 -1.95
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A.2 Additional results of power output calculations

Table A.2: Annual energy output evaluation of power output calculations with measured wind
speed data in 2015 (density from open FRED) - negative deviations imply underestimation, positive
deviations overestimation

measured P Cp P (d.-c.)

[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

BE 1 3331.63 2.58 3417.45 10.61 3685.03 3.21 3438.60

BE 2 3500.55 -2.77 3403.60 5.09 3678.88 -2.04 3429.20

BE 3 3303.77 -8.99 3006.68 -1.27 3261.83 -8.29 3029.86

BE 4 3942.46 -16.60 3288.01 -9.66 3561.68 -15.95 3313.48

BE 5 3510.42 -6.25 3291.18 1.15 3550.79 -5.49 3317.85

BE 6 3303.03 -9.35 2994.22 -1.28 3260.70 -8.66 3017.10

BE 7 3344.44 0.75 3369.57 8.81 3639.07 1.50 3394.46

BE 8 3515.53 -22.47 2725.50 -15.54 2969.16 -21.89 2745.82

BE 9 3490.20 -9.95 3142.96 -2.65 3397.68 -9.28 3166.36

BNW 1 2363.42 -9.14 2147.40 6.81 2524.36 -7.81 2178.79

BNW 2 2404.17 -12.18 2111.43 3.47 2487.67 -10.82 2143.94

BS 1 3194.12 -16.38 2670.79 -8.58 2919.93 -15.73 2691.76

BS 10 3215.55 -9.18 2920.29 -1.18 3177.49 -8.48 2942.93

BS 11 3959.12 -8.95 3604.96 -1.66 3893.44 -8.29 3630.99

BS 12 3818.39 -18.45 3113.75 -11.56 3377.01 -17.83 3137.51

BS 13 4167.93 -3.47 4023.31 3.28 4304.59 -2.90 4047.19

BS 14 3545.42 -22.60 2744.32 -15.36 3001.01 -22.00 2765.45

BS 2 2976.16 -19.64 2391.58 -11.54 2632.67 -19.07 2408.55

BS 3 3389.00 -16.40 2833.15 -8.80 3090.63 -15.81 2853.09

BS 4 3519.44 -17.53 2902.51 -10.01 3167.16 -16.95 2922.94

BS 5 3340.41 -14.56 2853.95 -6.48 3123.82 -13.96 2874.15

BS 6 4362.59 -17.07 3618.06 -10.51 3904.20 -16.46 3644.55

BS 7 3747.79 -17.80 3080.60 -10.72 3345.89 -17.24 3101.69

BS 8 3442.58 -22.53 2666.95 -15.38 2913.12 -21.96 2686.63

BS 9 4612.55 -20.24 3679.16 -14.00 3967.02 -19.69 3704.21
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Table A.3: Annual energy output evaluation of power output calculations with measured wind
speed data in 2016 (density from open FRED) - negative deviations imply underestimation, positive
deviations overestimation

measured P Cp P (d.-c.)

[MWh] deviation [%] [MWh] deviation [%] [MWh] deviation [%] [MWh]

BE 1 3165.61 4.38 3304.30 13.42 3590.43 5.17 3329.14

BE 2 3297.41 -2.38 3218.94 6.53 3512.64 -1.33 3253.39

BE 3 3138.79 -6.88 2922.79 1.91 3198.74 -5.98 2950.96

BE 4 3615.93 -17.14 2996.16 -9.30 3279.60 -16.34 3024.94

BE 5 3454.18 -7.18 3206.04 1.18 3495.07 -6.35 3234.71

BE 6 3145.82 -9.58 2844.55 -0.67 3124.89 -8.68 2872.68

BE 7 3114.91 0.60 3133.45 9.79 3419.78 1.60 3164.88

BE 8 3260.03 -22.98 2510.94 -15.16 2765.92 -22.19 2536.67

BE 9 3370.69 -8.96 3068.62 -0.70 3347.23 -8.18 3094.98

BNW 1 2077.22 -13.03 1806.46 3.82 2156.56 -11.76 1833.03

BNW 2 2052.44 -8.29 1882.29 8.96 2236.42 -6.98 1909.25

BS 1 2379.17 -19.11 1924.61 -9.91 2143.39 -18.34 1942.90

BS 10 2447.14 -10.71 2185.01 -1.25 2416.59 -9.86 2205.96

BS 11 3019.73 -9.20 2741.95 -0.40 3007.76 -8.21 2771.69

BS 12 2802.59 -20.73 2221.63 -12.45 2453.58 -19.89 2245.17

BS 13 3163.12 -1.58 3113.16 6.66 3373.65 -0.72 3140.40

BS 14 2607.01 -25.21 1949.89 -16.45 2178.03 -24.37 1971.78

BS 2 2361.44 -21.65 1850.22 -12.34 2069.97 -20.92 1867.32

BS 3 2571.81 -18.05 2107.55 -8.85 2344.18 -17.18 2130.05

BS 4 2750.11 -18.77 2233.92 -9.72 2482.86 -17.91 2257.44

BS 5 2578.71 -15.55 2177.67 -6.04 2422.87 -14.77 2197.91

BS 6 3417.58 -18.92 2770.97 -11.14 3036.91 -18.13 2798.02

BS 7 2894.88 -20.14 2311.88 -11.58 2559.61 -19.27 2337.09

BS 8 2624.72 -25.37 1958.79 -16.85 2182.56 -24.66 1977.57

BS 9 3625.80 -22.45 2811.82 -14.97 3082.99 -21.68 2839.62
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A.3 Additional results of power curve smoothing

Table A.4: Standard deviation of feed-in time series calculated with smoothed power
curves (method for standard deviation of gauss distribution: TI - turbulence intensity, SP -
Staffell Pfenniger) and calculated with a simple aggregation (Agg.) of turbine feed-in and of the
measured time series. (average of results for 2015 and 2016)

Weather data Temporal Standard deviation in MW

name resolution Agg. SP TI Measured

WF BE half-hourly 5.11 4.34 4.82 4.02

hourly 5.09 4.35 4.81 3.99

monthly 1.56 1.32 1.47 1.16

WF BNE half-hourly 7.21 6.50 6.89 5.50

hourly 7.16 6.46 6.84 5.45

monthly 2.35 2.07 2.21 1.64

WF BNW half-hourly 1.01 0.89 0.96 0.78

hourly 1.00 0.88 0.95 0.76

monthly 0.35 0.31 0.33 0.28

WF BS half-hourly 8.35 7.02 7.71 6.51

hourly 8.29 7.02 7.69 6.42

monthly 3.22 2.65 2.94 2.28

WF SH half-hourly 4.51 3.91 4.25 4.10

hourly 4.50 3.91 4.24 4.07

monthly 1.67 1.42 1.56 1.62

WF BE WF BNE WF BNW WF BS WF SH
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Figure A.1: Pearson correlation coefficient of monthly time series calculated with different
smoothing approaches and with simple aggregation (average of 2015 and 2016)
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A.4 Additional results of wake losses simulations

Table A.5: Evaluation of feed-in time series calculated with different wake losses methods for the
year 2015

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Calc. Const. Dena No losses Calc. Const. Dena No losses Calc. Const. Dena No losses Calc. Const. Dena No losses

WF BE half-hourly 3.38 3.17 3.53 3.79 59.72 56.03 62.39 67.10 0.72 0.71 0.72 0.71 0.19 -0.32 0.25 1.01

hourly 3.24 3.03 3.39 3.66 59.15 55.30 61.84 66.87 0.74 0.73 0.74 0.73 0.22 -0.28 0.27 1.02

monthly 0.25 0.37 0.34 1.03 4.35 6.55 6.00 18.21 1.00 1.00 1.00 1.00 0.17 -0.34 0.24 0.98

WF BNW half-hourly 0.65 0.54 0.64 0.71 79.01 65.76 77.68 86.09 0.80 0.80 0.80 0.80 0.22 0.07 0.18 0.30

hourly 0.62 0.51 0.61 0.68 78.06 64.38 76.58 85.47 0.82 0.81 0.82 0.81 0.21 0.08 0.17 0.29

monthly 0.24 0.12 0.21 0.32 30.52 15.21 26.25 40.44 0.96 0.96 0.96 0.96 0.22 0.08 0.18 0.30

WF BS half-hourly 5.12 4.54 5.30 5.94 60.68 53.82 62.85 70.44 0.80 0.78 0.79 0.78 1.26 0.38 1.45 2.59

hourly 4.89 4.33 5.07 5.72 60.28 53.41 62.51 70.55 0.81 0.80 0.81 0.80 1.22 0.39 1.40 2.51

monthly 1.83 0.86 2.05 3.12 20.30 9.49 22.72 34.56 0.98 0.97 0.98 0.97 1.47 0.48 1.68 2.85

Table A.6: Evaluation of feed-in time series calculated with different wake losses methods for the
year 2016

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Calc. Const. Dena No losses Calc. Const. Dena No losses Calc. Const. Dena No losses Calc. Const. Dena No losses

WF BE half-hourly 3.41 3.16 3.56 3.85 66.43 61.59 69.47 74.95 0.69 0.68 0.69 0.68 0.22 -0.24 0.26 0.99

hourly 3.27 3.03 3.42 3.71 65.87 60.94 68.89 74.67 0.71 0.71 0.71 0.71 0.23 -0.21 0.27 0.97

monthly 0.73 0.53 0.82 1.39 13.69 9.97 15.27 25.93 0.90 0.90 0.90 0.90 0.37 -0.13 0.42 1.17

WF BNW half-hourly 0.68 0.56 0.66 0.75 101.06 83.53 97.78 112.23 0.76 0.76 0.77 0.76 0.33 0.20 0.29 0.42

hourly 0.65 0.53 0.63 0.73 101.08 83.02 97.53 112.72 0.78 0.77 0.78 0.77 0.32 0.20 0.28 0.41

monthly 0.34 0.22 0.30 0.43 52.83 33.35 46.42 66.07 0.96 0.95 0.96 0.95 0.33 0.20 0.29 0.41

WF BS half-hourly 5.22 4.61 5.41 6.07 67.40 59.43 69.81 78.27 0.75 0.74 0.75 0.74 1.30 0.58 1.49 2.66

hourly 4.96 4.37 5.15 5.81 66.79 58.83 69.26 78.19 0.78 0.76 0.77 0.76 1.26 0.56 1.43 2.56

monthly 1.74 0.78 1.95 3.04 20.39 9.09 22.77 35.53 0.98 0.98 0.98 0.98 1.48 0.59 1.69 2.88
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A.5 Additional results of single wind turbine model simulations
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Figure A.2: Statistical metrics of hourly feed-in time series of single wind turbines calculated
with MERRA weather data (average of 2015 and 2016)

Table A.7: Evaluation of feed-in time series calculated for the single turbine model with
open FRED data in 2015

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.)

BE half-hourly 0.43 0.42 0.42 70.75 69.19 69.10 0.73 0.73 0.73 0.11 0.07 0.07

hourly 0.42 0.41 0.41 70.09 68.42 68.27 0.75 0.74 0.75 0.11 0.07 0.07

BNW half-hourly 0.44 0.37 0.37 114.85 97.23 98.31 0.77 0.78 0.78 0.24 0.16 0.17

hourly 0.42 0.36 0.36 114.74 96.66 97.77 0.79 0.79 0.80 0.23 0.16 0.16

monthly 0.25 0.17 0.18 67.51 47.07 48.64 0.97 0.96 0.96 0.24 0.16 0.17

BS half-hourly 0.49 0.46 0.47 114.19 107.74 108.58 0.74 0.75 0.75 0.26 0.22 0.22

hourly 0.48 0.45 0.45 115.15 108.30 109.17 0.76 0.76 0.76 0.26 0.22 0.22

monthly 0.30 0.26 0.26 67.87 57.96 59.89 0.94 0.93 0.94 0.27 0.23 0.23
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Table A.8: Evaluation of feed-in time series calculated for the single turbine model with
open FRED data in 2016

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.)

BE half-hourly 0.44 0.42 0.43 81.87 78.41 79.62 0.70 0.70 0.70 0.11 0.06 0.07

hourly 0.43 0.41 0.41 81.60 78.07 79.23 0.71 0.71 0.71 0.11 0.07 0.07

BNW half-hourly 0.43 0.36 0.37 134.22 110.82 113.48 0.76 0.77 0.77 0.27 0.19 0.20

hourly 0.42 0.35 0.35 134.38 110.28 113.04 0.78 0.79 0.79 0.26 0.19 0.19

monthly 0.28 0.20 0.21 86.91 61.74 65.05 0.94 0.95 0.95 0.26 0.19 0.20

BS half-hourly 0.49 0.46 0.47 137.27 128.12 130.50 0.70 0.70 0.70 0.26 0.22 0.22

hourly 0.47 0.44 0.45 139.03 129.39 131.83 0.72 0.72 0.72 0.26 0.21 0.22

monthly 0.29 0.25 0.26 80.30 67.45 70.71 0.96 0.97 0.96 0.27 0.22 0.23

Table A.9: Evaluation of feed-in time series calculated for the single turbine model with MERRA
data in 2015

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.)

BE hourly 0.49 0.47 0.47 82.93 79.34 79.22 0.76 0.75 0.76 0.28 0.23 0.24

BNW hourly 0.51 0.42 0.43 137.58 114.34 115.77 0.82 0.83 0.83 0.37 0.28 0.29

monthly 0.37 0.29 0.29 104.13 80.37 82.24 0.98 0.98 0.98 0.36 0.28 0.29

BS hourly 0.64 0.61 0.61 154.42 146.66 147.15 0.76 0.76 0.76 0.48 0.44 0.44

monthly 0.49 0.45 0.46 116.58 106.40 107.46 0.95 0.95 0.96 0.48 0.44 0.45

Table A.10: Evaluation of feed-in time series calculated for the single turbine model with MERRA
data in 2016

RMSE [MW] RMSE [%] Pearson coefficient mean bias [MW]

Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.) Cp P P (d.-c.)

BE hourly 0.47 0.44 0.45 89.71 84.87 85.44 0.76 0.76 0.76 0.25 0.21 0.21

BNW hourly 0.45 0.37 0.37 143.18 116.56 119.20 0.82 0.83 0.83 0.32 0.24 0.25

monthly 0.32 0.24 0.25 104.59 78.25 81.30 0.98 0.98 0.98 0.32 0.24 0.24

BS hourly 0.62 0.58 0.59 180.87 170.23 171.53 0.75 0.76 0.76 0.46 0.41 0.42

monthly 0.46 0.42 0.42 137.27 123.74 125.61 0.98 0.99 0.99 0.45 0.41 0.41
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