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Abstract

Growing demand, distributed generation, such as renewable energy sources

(RES), and the increasing role of storage systems to mitigate the volatility of

RES on a medium voltage level, push existing distribution grids to their limits.

Therefore, necessary network expansion needs to be evaluated to guarantee a

safe and reliable electricity supply in the future taking these challenges into

account.

This problem is formulated as an optimal power flow (OPF) problem which

combines network expansion, volatile generation and storage systems, minimiz-

ing network expansion and generation costs. As storage systems introduce a

temporal coupling into the system, a multiperiod OPF problem is needed and

analysed in this thesis.

To reduce complexity, the network expansion problem is represented in a

continuous nonlinear programming formulation by using fundamental properties

of electrical engeneering. This formulation is validated succesfully against a

common mixed integer programming approach on a 30 and 57 bus network with

respect to solution and computing time.

As the OPF problem is, in general, a nonconvex, nonlinear problem and,

thus, hard to solve, convex relaxations of the power flow equations have gained

increasing interest. Sufficient conditions are represented which guarantee exact-

ness of a second-order cone (SOC) relaxation of an operational OPF in radial

networks. In this thesis, these conditions are enhanced for the network expan-

sion planning problem. Additionally, nonconvexities introduced by the choice

of network expansion variables are relaxed by using McCormick envelopes.

These relaxations are then applied on the multiperiod OPF and compared to

the original problem on a 30 and a 57 bus network. In particular, the compu-

tational time is decreased by an order up to 102 by the SOC relaxation while it

provides either an exact solution or a sufficient lower bound on the original prob-

lem. Finally, a sensitivity study is performed on weights of network expansion

costs showing strong dependency of both the solution of performed expansion

and solution time on the chosen weights.
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1 Introduction

1.1 Motivation

In recent years, distributed, as well as renewable energy generation have become

more and more important on a medium voltage level. Additionally, to mitigate

the associated volatility of the renewable energy sources (RES), storage systems

are playing an increasing role in network operation. Fig. 1.1 illustrates such a

distribution system, which are usually run in open ring structures, i.e. radial

networks, [1], [2].

Moreover, the increase in demand and distributed generation (DG) stresses

the exisisting distribution networks to the limits. Thus, network operators have

to evaluate necessary network expansion taking these changes into account, [1],

[2].

According to the German Energy Act [3], network operators need to guarantee

a safe and reliable electricity supply at all times which includes the required

demand as well as the technical physical constraints in the system. The goal in

network operation and planning is to meet these requirements cost optimally.

The problem can be formulated as follows: How to allocate the power injection

into the system, the expansion of existing power lines, and how to use storage

systems, which introduce a temporal coupling to the problem, to find an optimal

solution.

The problem is cast into a multiperiod optimal power flow (OPF) formulation.

The OPF problem minimizes an objective function, e.g. total cost of the sytem,

subject to physical and operational constraints in the network. It is usually a

nonconvex nonlinear problem and, hence, hard to solve in general, e.g. [4],[5].

In earlier studies, a linearized OPF is solved for high voltage transmission

networks. Assumptions that are made to linearize the OPF are acceptable

considering transmission networks, but fail when it comes to medium voltage

distribution grids, e.g. voltages across the network are not constant and line

resistances are not negligibly small compared to line reactances [6], [7].
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CHAPTER 1. INTRODUCTION

This motivates the analysis of a nonlinear multiperiod OPF in which the

relevant features of modern distribution networks, such as RES and storage

systems, are combined with the network expansion planning problem.

Figure 1.1: Schema of a distribution network

1.2 Problem formulation

In the following, the multiperiod OPF is introduced as the optimization pro-

gramming which the work in this thesis is based on. At first, the necessary

notations are described, followed by the objective function and physical and

technical constraints.

1.2.1 Notations

The power network is represented as a connected directed graph G = (N,E),

where each node in N with |N | = n + 1 represents a bus and each edge in E

with |E| = m represents a distribution line. The power network is called radial

2



CHAPTER 1. INTRODUCTION

if G is a tree. The nodes are indexed by i = 0, 1, . . . , n. Denote an edge by (i, k)

if it connects node i with node k.

For each edge (i, k) ∈ E, let Iik be the complex current and Sik = Pik + jQik

be the complex power flow between bus i and bus k, with Pik and Qik denoting

the active and reactive power flow, respectively. Furthermore, let lik = |Iik|2 be

the squared magnitude current and Imaxik be the current limit of the line between

bus i and bus k. Additionally, let zik = rik + jxik be the complex impedance on

the line between bus i and bus k with the resistance r and reactance x.

For each node i ∈ N , let vi = |Vi|2 be the squared magnitude voltage and

si = pi + jqi be the complex power injection at bus i, with pi and qi denoting

the active and reactive power injection, respectively. The active and reactive

power injection consists of power generation and consumption pi := pgi − pci and

qi := qgi − qci . Additionaly, let yi = gi − jbi be the complex shunt admittance

from bus i to the ground with the shunt conductance g and shunt susceptance

b.

The set of nodes with storage systems attached to them is denoted as S. For

each node i ∈ S, let uc,i, ud,i, ηc,i, and ηd,i be the charging and discharging rate,

and the charging and discharging efficiency, respectively. Further, let eti be the

energy level of the storage at node i at time step t. For the power injection at

nodes with storage systems the active power injection additionally consists of

the discharging and charging rate, i.e. pi := pgi − pci + ud,i − uc,i.

Figure 1.2: Power flow between three buses i, k, and m described in the line

model adapted from [8]
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CHAPTER 1. INTRODUCTION

1.2.2 Multiperiod OPF Problem Formulation

The goal is to minimize total network expansion and generation costs that arise

with the integration of distributed generators and new loads, considering stor-

age and possible curtailment that in conventional network planning are only

rarely taken into account. In order to sufficiently incorporate these into grid

planing a multiperiod OPF is introduced based on the followoing optimization

programming:

min
ptg ,q

t
g ,v

t,

`t,P t,Qt,Imax

∑
(i,k)∈E

CNEP (Imaxik ) +
∑
t∈T

∑
i∈N

Cg
(
ptg,i
)

(1.1)

s.t. (∀t ∈ T )

pk =
∑

m:k→m

Pkm −
∑
i:i→k

(Pik − rik`ik) + gkvk, ∀k ∈ N (1.2)

qk =
∑

m:k→m

Qkm −
∑
i:i→k

(Qik − xik`ik)− bkvk, ∀k ∈ N (1.3)

vk = vi − 2 (rikPik + xikQik) +
(
r2ik + x2ik

)
`ik, ∀ (i, k) ∈ E (1.4)

vi`ik = P 2
ik +Q2

ik, ∀ (i, k) ∈ E (1.5)

`ik ≤ |Imaxik |
2 ∀ (i, k) ∈ E (1.6)

rikI
max
ik = r0ikI

max,0
ik ∀ (i, k) ∈ E (1.7)

xikI
max
ik = x0

ikI
max,0
ik ∀ (i, k) ∈ E (1.8)

uc,iud,i = 0 ∀i ∈ S (1.9)

Ts

(
ηc,iu

t
c,i −

utd,i
ηd,i

)
= et+1

i − eti ∀i ∈ S (1.10)

e0i = eT+1
i ∀i ∈ S (1.11)

0 ≤ uc,i ≤ uc,i, 0 ≤ ud,i ≤ ud,i, 0 ≤ eti ≤ ei ∀i ∈ S (1.12)

vi ≤ vi ≤ vi, pi ≤ pi ≤ pi, qi ≤ qi ≤ qi ∀i ∈ N (1.13)

The total system costs consists of the generation cost function Cg (pgi ) =

c2,ip
2
g,i + c1,ipg,i + c0,i and the network expansion cost function CNEP (Imaxik ) =

cNEP,ijI
max
ik over a given time horizon T = {0, . . . , T}, in which the time step

of length Ts is denoted as t. The objective function is then given in (1.1).

The line model in Fig. 1.2 is used to set up the branch flow model (BFM)

(constraints (1.2)-(1.5)) proposed in [9] and will be explained in more detail in

section 3.1.

Constraint (1.2) and (1.3) represent the active and reactive power balance

constraints at each node k, respectively. The first sum describes all the outgoing

4



CHAPTER 1. INTRODUCTION

lines from and the second sum all the incoming lines to node k. The term rik`ik

(xik`ik) accounts for the active (reactive) power losses over the line (i, k).

Constraint (1.4) contains Ohm’s law and constraint (1.5) relates the power

flow and current magnitude over a line (i, k). The latter is a quadratic equality

constraint and introduces a nonconvexity into the problem.

Constraint (1.6) limits the squared magnitude current over a line. Constraints

(1.7) and (1.8) describe the dependency of the resistance and reactance on the

maximal current value of lines in parallel circuits, respectively, and are derived

in section 3.2.

To reduce the general complexity of the problem, a continuous variable Imaxik is

considered to account for network expansion in the system, rather than a mixed

integer approach proposed in other literature, see e.g. in [10]. The transition

between those approaches is explained in section 3.2. Additionally, instead of

allowing network expansion between any possible two buses, only existing lines

can be reinforced.

The complementary constraint (1.9) prevents the storage of simultaneous

charging and discharging and constraint (1.10) controls the time coupled state-

of-charge. Both constraints are proposed by Marley et al. in [11]. (1.11) repre-

sents a periodic end-value of the state-of-charge for storage systems.

technical upper bounds on the storage variables, and technical voltage, active

and reactive power injection limits for each bus i are described in (1.12) and

(1.13), respectively.

As the maximal current rating is a decision variable, so are the resistance

and reactance of the lines, which introduces the quadratic constraints (1.6) -

(1.8). Additionally, (1.2)-(1.4) become quadratic, as well. Furthermore, the

complementary constraint (1.9) is a nonconvex constraint.

Thus, the above multiperiod OPF, (1.1)-(1.10), is a nonconvex, nonlinear

optimization problem and hence, in general, hard to solve.

1.3 Overview of thesis

This thesis is organized as follows. Chapter 2 includes a short literature overview

regarding the optimal power flow problem. This overview includes represen-

tations of power flow equations and their relaxations, the network expansion

problem, and storage modelling in multiperiod optimal power flow problems.

Chapter 3 gives some theoretical background on the problem examined in

5



CHAPTER 1. INTRODUCTION

this thesis, including a description of the branch flow model, the derivation of

the network expansion representation proposed in this thesis, and mathematical

background of second-order cone programming.

The test networks and data on which all numerical studies are performed, as

well as the used solver are described in Chapter 4. In Chapter 5 a mixed integer

representation of network expansion is compared to the approach presented in

this thesis.

Chapter 6 explores relaxations of the optimal power flow problem analysed in

this thesis. Sufficient conditions are provided to guarantee exactness of a second-

order cone relaxation of the OPF including network expansion. Additionally, a

McCormick relaxation is used on the current limit constraint.

The relaxations introduced in Chapter 6 are applied on the original multi-

period optimal power flow including network expansion and storage systems

and a computational study is performed in Chapter 7 including a sensitivity

analysis considering network expansion costs.

A summary of the thesis as well as directions of possbile further research are

given in Chapter 8.

6



2 Literature Overview

The goal of the OPF problem is to optimize a given planning or operational

objective by controlling the power flow within the electrical system and the

physical and technical constraints. Possible objective include for instance mini-

mizing generation costs, minimizing losses in the system, or minimizing network

expansion costs [4]. The first formulation of the problem was proposed by Car-

pentier [12] in 1962. The OPF determines the dispatch of power injection, the

node voltages, current, and power flow throughout the system with respect to

the power flow equations.

In general, the OPF problem is a nonlinear, nonconvex, large-scale optimiza-

tion problem which may contain both continuous and discrete control vari-

ables. It is solved for many applications, such as long-term planning, day-ahead

scheduling, real-time dispatch, et cetera. [5, 13, 4, 14]

In the following, an overview of state-of-the-art in grid operation and planning

research is presented to motivate the decisions that are made for the multiperiod

OPF formulation used in this thesis and introduced in section 1.2.

2.1 Power flow equations

The key constraints of the OPF problem are the power flow equations which

model the fundamental electrical laws, such as the Ohm’s Law and the Kirchoff’s

Current Law. They are, however, nonlinear and nonconvex [5], [13].

There are two traditional representation of the power flow equation. The bus

injection model (BIM) focuses on the power injection and the voltage angle

differences at the buses. The complex variables, e.g. voltage variables, can be

expressed in either rectangular (V = Vd + iVq) or polar form (V = |V | expiθ ≡
|V |∠θ), see surveys [5, 13, 14] for detailed description.

The branch flow model (BFM) concentrates on the quantities on the lines

between the buses in the networks. It was first proposed by Baran and Wu in

1989 [15] for radial distribution networks and extended to transmission networks

7



CHAPTER 2. LITERATURE OVERVIEW

by Coffrin in 2018 [16].

As it is designed for distribution networks in particular, and as mentioned

later on, has beneficial numerical characteristics compared to BIM, power flow

equations are represented by the BFM throughout this thesis, see 1.2, and are

derived in 3.1.

2.2 Classical optimization

A variety of classical continuous deterministic optimization methods have been

applied to solve the OPF problem. The survey [14] gives a detailed overview

of the used optimization techniques. They include, e.g. gradient methods,

Newton’s method, and the interior point method. As gradient methods do not

evaluate 2nd order derivatives, they guarantee to find stationary points only,

which can be local or global optima for well-behaved (convex) problems. The

2nd order Newton’s method and the interior point method also guarantee local

optimality at most, due to the complexity of the general problem.

To find a global optimum of a multiperiod OPF, [17] propose a Branch-and-

Bound algorithm using a convex relaxation as the lower and the local interior

point method as the upper bound on the BIM.

2.3 Convex Relaxation

In recent years, convex relaxations of the power flow equation have been be-

come more and more popular to solve the OPF to global optimality. Those

relaxations enclose the nonconvex feasible space, spanned by the power flow

equations, and then use the fundamental property of convex optimization prob-

lems to solve the problem, i.e. any locally optimal point is also globally optimal

[18].

This results in three advantages. Firstly, if the relaxed problem is not feasi-

ble, the original problem is neither. Secondly, if an optimal solution is found,

the relaxation gives a lower (upper) bound of the original minimization (maxi-

mization) problem. And finally, if the optimal solution found in the relaxation

is feasible in the original problem, the solution is guaranteed to be a globally

optimal solution of the original problem.

Comprehensive surveys of applied convex relaxation to various OPF formu-

lations are given in [5] and [4]. There is always a trade off between having a

8



CHAPTER 2. LITERATURE OVERVIEW

relaxation which is easy to find but gives a insufficient lower bound, and having

a relaxation which encloses the feasible space of the original problem with the

smallest convex set, the convex hull 1 which may be hard to find. Some of the

key findings collected in the survey [5] and others regarding the relaxations of

the power flow equations are presented in the following.

In the BIM the power flow equations are quadratic polynomials in terms of the

complex voltage variables. This nonconvexity is often casted into one constraint

by introducing a new variable W = V (V ∗)T , where V = [V1, . . . , Vn]T represents

the collection of voltages, and V ∗ denotes the complex conjugate of V , so W is

a positive semi-definite matrix and has rank 1. The literature focuses on finding

relaxation for this particular constraint, including semidefinite programming

(SDP) or second-order cone programming (SOCP). See [19] for an overview.

SDP relaxation

To from an SDP relaxation of the power flow equation, the nonconvex constraint

W � 0 and rank(W ) = 1 is replaced by dropping the rank constraint resulting

in the less stringent constraint W � 0.

If the optimal solution Ŵ of this relaxation satisfies the rank condition, the

solution is exact and the decision variables can be recovered. Thus, the exactness

of the relaxation is checked a posteriori. For a variety of the IEEE test cases [20]

the SDP relaxation of the OPF tends to be exact, but fails for others [5]. The

exactness is influenced by the choice of the objective function, where minimizing

functions of active power generation tend to result in exactness more often [5].

Two sufficient conditions for exactness of the SDP relaxation can be found in

the literature. Firstly, SDP relaxation becomes exact in weakly cyclic meshed

networks, with a ”load-oversatisfaction” assumption, i.e. no lower limits on the

power injection, which means that power consumption can arbitrarily increase.

Secondly, assumption of lossless networks that are (1) cycles with at most one

chord 2 and (2) only have voltage magnitude constraints. [5]

1The convex hull of a set C, denoted convC, is the set of all convex combinations of points

in C, convC = {θ1x1 + · · ·+ θkxk|xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · ·+ θk = 1} [18]
2In graph theory, a chord can be seen as a shortcut, that reduces a path between a vertex v

to a vertex w to a shorter chordless path between these two vertices, see [21]
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CHAPTER 2. LITERATURE OVERVIEW

SOCP relaxation

The SOCP relaxation of the power flow equation in the BIM, proposed in [22],

again introduces a new variable Wij for the squared voltage magnitudes, where

Wij = ViV
∗
j for all i, j ∈ N ×N , but convexifies each constraint seperately to a

quadratic inequality, i.e. |Wij|2 ≤ WiiWjj for all (i, j) ∈ E.

Another SOCP relaxation is proposed for the BFM, which concentrates on

the quadratic equality constraint of the power flow over the lines, see equation

(1.5). By relaxing the equality to an inequality constraints, one obtains a rotated

SOCP (see section 3.3), i.e.

vi`ik = P 2
ik +Q2

ik ⇒ vi`ik ≥ P 2
ik +Q2

ik

In [23] it is proven that there is a one-to-one mapping between the SOCP of

the BFM and the SOCP of the BIM, so they are equivalent, but SOCP of the

BFM has shown beneficial numerical characteristics compared to the SOCP of

the BIM, [23],[11].

According to [24], the SDP relaxation is the strongest among the mentioned

relaxations and exact for many cases, but for large-scale problems, the SOCP

relaxation outperforms the SDP in terms of computational efficiency. Therefore,

they propose a new conic relaxation, combining SDP and the reformulation-

linearization technique (RLT) on the voltage products |Vij| = |vi||vj|, by defining

the convex hull of this product. Experiments show that this approach results

in a stronger relaxation than the SOCP, and smaller solution time compared to

the SDP relaxation.

[25] provides a number of sufficient conditions under which the SOCP relax-

ation, for both BIM and BFM, may be exact. In radial networks the SOCP

relaxation becomes exact, if (1) there are no lower bounds on the power in-

jection, also called ”load oversatisfaction”, (2) there are no upper bounds on

the voltages, or (3) there is either no reverse power flow3 or reverse power flow

consisting only reactive or active power.

As those conditions may be reasonable when considering an operational OPF

problem, they become meaningless if one considers a planning OPF problem

such as the network expansion problem. Network expansion is done when 1)

the lines between buses are overloaded and/or 2) the voltage bounds are violated,

[6].

3In radial networks no reverse power flow means there is no power flowing towards the

substation. [26]

10
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If one allows load oversatisfaction, every surplus in the distributed - in par-

ticular renewable - energy sources would be drained at some bus just to avoid

network expansion and not used in different parts of the network or in the

superior network. If there are no upper bound on the voltages, the second rea-

son to expand the network, the voltage violations, would be futile. Finally, as

distributed volatile energy sources and storage systems are considered, a unidi-

rectional power flow is not likely.

[27] provide sufficient conditions under which SOCP relaxation is guaranteed

to be exact in radial networks for an operational OPF problem, these conditions

are introduced and verified for the network expansion problem in Chapter 6.

2.4 Network expansion

As mentioned, there are mainly two reasons for network expansion: (1) Violation

of the thermal limit of existing lines, i.e. overloading, or (2) violation of voltage

bounds at nodes.

The planning process can be distinguished in single-stage or multi-stage pro-

cess. In the single-stage scenario, the goal is to plan where to install new lines for

a single case, whereas the multi-stage scenario also considers, when to expand

the lines [10].

Network expansion is usually approached by solving a mixed integer problem

(MIP), described for example in [10] and [4]. It can be distinguished between

a multiple parallel line model (MPLP), see Section 3.2, and a binary MIP

formulation.

The MPLP is presented for instance in [10]. An integer variable nij ∈ Z for

all (i, j) ∈ E, representing the number of parallel lines between bus i and bus j,

and a binary variable α(k), equal to one if the kth line is build, are introduced.

A multistage binary MIP is proposed in [28], by defining possible line instal-

lation options y between bus i and j. The value of y then represents the number

of lines installed between the to buses. A binary variable wij,y,t indicates which

option is used at each stage t. Additionally, it is made sure that once an option

y at a stage t− 1 is chosen, the number of lines between bus i and j is greater

than or equal to that option at stage t, as lines cannot be removed later in the

process.

Another approach to solve the network expansion problem is to define a num-

ber of worst cases, namely load case and feed-in case, and then perform an

11
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iterative unconstraint power flow simulation with fixed power injection and con-

sumption throughout the network. Following each simulation, lines are either

reinforced or new lines are installed to tackle violation of thermal limits and

voltage bounds, respectively [6].

2.5 Energy storage systems

When considering energy storage systems, a temporal coupling is introduced to

the problem since a storage can only be discharged if charged in an earlier stage

and vice versa. An overview of literature on multiperiod OPF models including

storage systems is given for example in [29]. In [29], a number of key features

are mentioned how storage systems are handled in multiperiod OPF.

An important constraint is the end-value constraint representing the capacity

stored in the storage at the end of the considered time horizon. In literature it

is for example distinguished between fixed values for the state-of-charge E at

the time boundaries, periodic boundaries, i.e. E0 = ET or a minimal state of

charge at the end, ET ≥ Emin
T . Another feature is the considered time-horizon.

Most of the reviewed literature considers a 24-h planning horizon.

Figure 2.1: Feasible region of complementary constraint (1.9) (red dashed lines),

and its convex hull (2.1) (blue), [11]

The storage dynamics are represented either through a single variable for

charging (negative, power extracted from the network) and discharging (posi-

tive, power introduced into the network), e.g. [30], or through two variables

denoting charging, uc, and discharging, ud, rate, e.g. [11]. The latter approach

introduces a complementary constraint to avoid similtaneuous charging and dis-

charging, i.e. ucud = 0. In [11] the nonconvex complementary constraint of the

12
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charging/discharging rate is then relaxed by introducing the convex hull of the

constraint, which is illustrated in Fig. 2.1:

utc,iu
t
d,i = 0 ⇒ utc,i ≤ −

(
Rmax
c,i

Rmax
d,i

)
utd,i +Rmax

c,i (2.1)

To capture both the charging and discharging behaviour of the problem, es-

pecially since they will become more detailed and sophisticated, e.g. in [31], the

”two variable” representation including its relaxed complementary constraint is

used throughout this thesis.
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3 Theoretical Background

This chapter introduces the theoretical background necessary to understand

the OPF formulation which is introduced in section 1.2. First, the power flow

equation in form of the branch flow model are explained in more detail.

Afterwards, the transformation of a mixed integer programming to a contin-

uous representation of the network expansion problem is described.

The theoretical background is completed by presenting the normal form of

the second-order cone programming as fundamental principles needed for the

analytical study in chapter 6.

3.1 Branch Flow Model

As mentioned, the BFM was first proposed by Baran and Wu in [15] for radial

networks. Let G = (N,E) be a connected directed tree, where each node in N

with |N | = n+ 1 represents a bus and each edge in E with |E| = m represents

a distribution line.

In general, the power flow equations contain complex variables such as the

complex voltage V , the complex current I, the complex power injection s =

p+jq, where p and q denote the active and reactive power injection, respectively,

and the complex apparent power flow S = P + jQ, where P and Q denote the

active and reactive power flow, respectively. Additionaly, each edge (i, j) has a

complex line impedance zij = rij + jxij, and nodes may have a complex shunt

admittance yi = gi + jbi. Moreover, let A∗ denote the complex conjugate of

complex variable A.

For each node i and each edge (i, j), the variables (S, I, V, s) have to satisfy

Ohm’s law

Vi − Vj = zijIij, ∀(i, j) ∈ E , (3.1)

the definition of the branch power flow

Sij = ViI
∗
ij, ∀(i, j) ∈ E , (3.2)
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and the power balance at each bus j ∈ N∑
m:j→m

Sjm −
∑
i:i→j

(
Sij − zij |Iij|2

)
+ y∗j |Vj|

2 = sj . (3.3)

Substituting (3.2) into (3.1) yields:

Vj = Vi − zij
S∗ij
V ∗i

, ∀(i, j) ∈ E (3.4)

Taking the magnitude squared of (3.2) and (3.4), writing the equation in terms

of real variable, one obtains the following branch flow model:

pj =
∑

m:j→m

Pjm −
∑
i:i→j

(
Pij − rij |Iij|2

)
+ gj |Vj|2 , ∀j ∈ N

qj =
∑

m:j→m

Qjm −
∑
i:i→j

(
Qij − xij |Iij|2

)
− bi |Vj|2 , ∀j ∈ N

|Vj|2 = |Vi|2 − 2 (rijPij + xijQij) +
(
r2ij + x2ij

)
|Iij|2 , ∀ (i, j) ∈ E

|Iij|2 =
P 2
ij +Q2

ij

|Vi|2
, ∀ (i, j) ∈ E

The notation of `ik = |Iij|2 and vi = |Vi|2 results in the BFM described in (1.2)

- (1.5) in section 1.2 and is derived from [9]. In the literature, it is often called

relaxed branch flow model, as information of the voltage and current angles, ∠Vi
and ∠Iij, respectively, are lost, and the set of variables (P,Q, v, `) is a subset of

the complex variables (S, V, I), see e.g [9], [23], [25]. However, in [9] it is proven

that for radial networks, i.e. G is a tree, one can easily recover the angles from

the solution of the relaxed BFM. Therefore, the term BFM is used for the power

flow equation in (1.2) - (1.5) throughout this thesis.

3.2 Network Expansion

In this section, the multiple parallel line model is introduced, followed by a

short description of the behaviour of resistors and inductors in parallel circuits

to explain the transition from a MINLP to an NLP formulation.

3.2.1 Multiple Parallel Line Model

In the Multiple Parallel Line Model (MPLM), n similar parallel lines may be

installed between any two buses i and k, as illustrated in Fig. 3.1. Each of those
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lines has the same impendance z = r + jx, apparent power flow S = P + jQ,

and current flow `.

In this model, line impedances are technical parameters and fixed for each

line. The power flow and current flow is bounded by the thermal limits of a

particular line m, i.e. `ik ≤ `ik and |Sik| ≤ Sik for all lines (i, k) in E.

Again, each node i and each line (i, k) in E have to satisfy the power flow

equation represented in the previous section 3.1, resulting in the following con-

straints, written in terms of real variables:

pk =
∑

m:k→m

nkmPkm −
∑
i:i→k

nik (Pik − rik`ik) + gkvk, ∀k ∈ N (3.5)

qk =
∑

m:k→m

nkmQkm −
∑
i:i→k

nik (Qik − xik`ik)− bkvk, ∀k ∈ N (3.6)

vk = vi − nik
(
2 (rikPik + xikQik) +

(
r2ik + x2ik

)
`ik
)
, ∀ (i, k) ∈ E (3.7)

vi`ik = P 2
ik +Q2

ik, ∀ (i, k) ∈ E (3.8)

0 ≤ `ik ≤ `ik, p
ik
≤ pik ≤ pik, q

ik
≤ qik ≤ qik ∀(i, j) ∈ E (3.9)

1 ≤ nik ≤ nmax, nik ∈ Z ∀ (i, k) ∈ E (3.10)

As only whole number of lines can be installed, the constraints (3.5)-(3.7)

containing the integer variable n and constraints become MINLP constraints.

These constraints are denoted as Multiple Parallel Line Programming (MPLP).

As MINLPs are, in general, harder to solve than NLP, this motivates the refor-

mulation of the network expansion problem into a continuous NLP.

Figure 3.1: n lines installed between bus i and bus j
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3.2.2 Continuous Network Expansion Problem

To transform the MPLP into an NLP, this section gives a short overview of the

characteristics of two electrical components, resistance and inductor units, in

parallel circuits, a detailed description of parallel circuits can be found in [32].

These characteristics are used to formulate an NLP for the network expansion

problem. Fig. 3.2 illustrates parallel circuits of resistances R and inductors L.

Figure 3.2: Resistances Ri (left) and inductors Li (right) in parallel circuits

The total resistance R of such a circuit is obtained by summing the reciprocal

values of all resistance units Ri in the parallel circuits.

1

R
=

n∑
i=1

1

Ri

Considering N equal resistance units R0 in the circuit the expression simplifies

to
1

R
= N

1

R0

⇔ R =
1

N
R0 (3.11)

The total inductance L is calculated for N equal non-coupled, i.e. the magnetic

fields of the units do not interact with each other, inductor units L0 analagously,

resulting in

L =
1

N
L0 (3.12)

The reactance of a circuit x is propotional to its inductance and the nominal

frequency of the current in the electrical power grid, i.e. 50 Hz in Germany, so

(3.12) can be written as

x =
1

N
x0 (3.13)

Denote the maximal allowed current over a circuit as Imax,0 and consider N

equal parallel circuits, than the total maximal allowed current, denoted as Imax,

can be written as

Imax = NImax,0 ⇔ N =
Imax

Imax,0
(3.14)

18



CHAPTER 3. THEORETICAL BACKGROUND

Plugging (3.14) into (3.11) and (3.13) with resistance in alternating currents

r = R yields the constraint given in (1.7) and (1.8)

rImax = r0Imax,0 (1.7)

xImax = x0Imax,0 (1.8)

By including the variable n from the MPLP in section 3.2.1 into the − as of

now − variables r and x and letting the ratio of Imax and Imax,0 be continuous,

the MPLP turns into an NLP, in which for each node i and for each line i, j in G

the power flow equation (1.2) - (1.5) have to be satisfy with the set of variables

(P,Q, v, `, Imax, r, x). This NLP is the OPF formulation which is introduced in

section 1.2 without storage systems for a single time step.

3.3 Second-order cone programming

A class of optimization problems is called second-order cone programming (SOCP).

This section gives a basic understanding of this class which will be needed in

Chapter 6. The SOCP can be represented as:

min
x

fTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di i = 1, . . . ,m

Fx ≤ g,

(3.15)

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, F ∈ Rp×n, and ‖ · ‖2
denotes the 2-norm of a vector. The constraint of the form

‖Ax+ b‖2 ≤ cTx+ d (3.16)

whereA ∈ Rk×n is called a second-order cone constraint, since the affine function(
Ax+ b, cTx+ d

)
lies in the set of the norm cone C = {(x, t) |‖x‖ ≤ t} ⊆ Rk+1.

The SOCP is convex, hence, each locally optimal solution is also a globally op-

timal solution, for a more detailed description see [18]. Figure 3.3 illustrates the

boundary of a second-order cone in R3 where the interior of the cone describes

the feasible space of the constraint.

In Chapter 6, nonconvex equality constraint of the branch flow (1.5) is relaxed

to an inequality constraint. Any constraint of the form ‖u‖2 ≤ ab, with any

vector u, and a ≥ 0, b ≥ 0 can be represented as a rotated second-order cone
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Figure 3.3: Boundary of second-order cone in R3,
{

(x1, x2, t) | (x21 + x22)
1/2 ≤ t

}
where the interior of the cone describes the feasible space[18]

(SOC) constraint by the transformation to∥∥∥∥∥
[

2u

a− b

]∥∥∥∥∥
2

≤ a+ b, (3.17)

since ∥∥∥∥∥
[

2u

a− b

]∥∥∥∥∥
2

2

≤ (a+ b)2

⇔ 4‖u‖2 + a2 − 2ab+ b2 ≤ a2 + 2ab+ b2

⇔ 4‖u‖2 ≤ 4ab

⇔ ‖u‖2 ≤ ab.

Hence, the relaxation of the nonconvex equality constraint of the branch flow

(1.5) can be represented as an SOC constraint.
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4 Test Networks and Solver

In the following, the data and solver which are used throughout my thesis are

described. All numerical studies performed are based on two radial IEEE net-

works used in [33] and provided through the NESTA library, a collections of

established power network test cases [34]. With these test networks various

OPF problems are created.

4.1 Test cases

In this work, all problem formulations are applied on two radial networks con-

taining 30 and 57 buses. In the following, data for these networks are provided.

4.1.1 30 Bus Case

The 30 bus network contains − beside the substation at bus 1 at which the

slack is set − five distributed generators with a maximal active power capacity

of 5.4 MW against a peak active load of 1.417 MW and peak reactive load of

0.63 MVAR.

Throughout this thesis, the active power output of generators at the buses

11 and 13 will be fixed to simulate non-dispatchable generation, e.g. volatile

renewable energy sources which need to be allowed to inject all of their generated

power.

The load and generation data is given in Table 4.2. The voltages of the buses

are bounded with 0.94 p.u.1 ≤ Vi ≤ 1.06 p.u. for all buses in the network.

Table 4.1 summarizes the branch data of the 30 bus network. Transformers

in the network are modelled through lines with resistance r equal zero. The

network is illustrated in Fig. 4.1.

1p.u.: per unit
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Figure 4.1: 30 bus network, the slack at substation bus 1, three dispatchable gen-

erators at bus 2, 5, 8, two non-dispatchable generators at bus 11, 13.

Table 4.1: Impedances and maximal allowed current of lines in 30 bus network

Branch Data

from to r0 x0 Imax,0 from to r0 x0 Imax,0

bus bus Ω Ω kA bus bus Ω Ω kA

1 3 0.0452 0.1652 1.829 15 18 0.1073 0.2185 1.287

2 4 0.057 0.1737 1.712 18 19 0.0639 0.1292 2.170

3 4 0.0132 0.0379 7.776 10 20 0.0936 0.209 1.372

2 6 0.0581 0.1763 1.691 10 17 0.0324 0.0845 3.457

5 7 0.046 0.116 2.510 10 22 0.0727 0.1499 1.88

6 7 0.0267 0.082 3.627 21 22 0.0116 0.0236 11.872

6 8 0.012 0.042 7.148 22 24 0.115 0.179 1.468

6 10 0 0.556 0.563 23 24 0.132 0.27 1.042

9 11 0 0.208 1.510 25 26 0.2544 0.38 0.691

9 10 0 0.11 2.840 25 27 0.1093 0.2087 1.329

4 12 0 0.256 1.223 28 27 0 0.396 0.797

12 13 0 0.14 2.234 27 29 0.2198 0.4153 0.670

12 14 0.1231 0.2559 1.106 29 30 0.2399 0.4533 0.617

12 15 0.0662 0.1304 2.138 8 28 0.0636 0.2 1.489

16 17 0.0524 0.1923 1.574
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Table 4.2: Load and generation capacity of 30 bus network

Load Data Flexible generation

Bus Pd Qd Bus Pd Qd Bus Qg
max Qg

min P g
max

No. MW MVA No. MW MVA No. MVA MVA MW

2 0.1085 0.0635 17 0.045 0.029 2 0.5 -0.3 1.4

3 0.012 0.006 18 0.016 0.0045 5 0.4 -0.3 1

4 0.038 0.008 19 0.0475 0.017 8 0.4 0 1

5 0.471 0.095 20 0.011 0.0035 Fixed generation

7 0.114 0.0545 21 0.0875 0.056 Bus Qg
max Qg

min P g

8 0.15 0.15 23 0.016 0.008 No. MVA MVA MW

10 0.029 0.01 24 0.0435 0.0335 11 0.24 0 1

12 0.056 0.0375 26 0.0175 0.0115 13 0.24 0 1

14 0.031 0.008 29 0.012 0.0045 Shunt capacitors

15 0.041 0.0125 30 0.053 0.0095 Bus MVar Bus MVar

16 0.0175 0.009 10 0.19 24 0.043

Ppeak = 1.417 MW Qpeak = 0.63 MW Vmin = 0.94 Vmax = 1.06

Figure 4.2: 57 bus network ,the slack at substation bus 1, three dispatchable

generators at bus 4, 8, 12, three non-dispatchable generators at bus

2, 6,

23



CHAPTER 4. TEST NETWORKS AND SOLVER

4.1.2 57 Bus Case

The 57 bus network contains six generators. The generators at buses 2, 6,

and 9 are fixed at their nominal active power generation of pg = 1 MW. The

total maximal capacity of the distributed generation in the network is 14 MW,

whereas the peak load lies at 4.7 MW and 1.105 MVAR for the active and

reactive part, respectively. The voltages are again bounded with Vmin = 0.94

p.u. and Vmax = 1.06 p.u. Table 4.3 summarizes the data of load and generation

in the network and table 4.4 the line impedances and thermal limits. Again,

transformers are modelled as lines with a resistance r = 0.

Table 4.3: Load and generation capacity of 57 bus network

Load Data Flexible generation

Bus Pd Qd Bus Pd Qd Bus Qg
max Qg

min P g
max

No. MW MVA No. MW MVA No. MVA MVA MW

1 0.183 0.0557 29 0.057 0.0096 3 0.6 -0.2 1.4

2 0.01 0.2853 30 0.012 0.0067 8 2 -1.5 5.5

3 0.137 0.0682 31 0.019 0.0096 12 1.55 -1.6 4.1

5 0.043 0.0125 32 0.005 0.0029 Fixed generation

6 0.25 0.0077 33 0.013 0.0067 bus Qg
max Qg

min P g

8 0.5 0.0711 35 0.02 0.0096 No. MVA MVA MW

9 0.403 0.0845 38 0.047 0.0221 2 0.5 -0.27 1

10 0.017 0.0077 41 0.021 0.0096 6 0.25 -0.18 1

12 1.257 0.0778 42 0.024 0.0154 9 0.09 -0.13 1

13 0.06 0.0086 43 0.007 0.0029 Shunt capacitors

14 0.035 0.0173 44 0.04 0.0067 Bus MVar

15 0.073 0.0163 47 0.099 0.0384 18 0.1

16 0.143 0.0096 49 0.06 0.0269 25 0.059

17 0.14 0.0269 50 0.07 0.0346 53 0.063

18 0.091 0.0317 51 0.06 0.0173 Peak load

19 0.011 0.0019 52 0.016 0.0077 Active Reactive

20 0.008 0.0029 53 0.067 0.0317 MW MVA

23 0.021 0.0077 54 0.014 0.0058 4.7 1.105

25 0.021 0.0106 55 0.023 0.0106 Voltage bounds

27 0.031 0.0019 56 0.025 0.0077 Vmin = 0.94

28 0.015 0.0086 57 0.022 0.0077 Vmax = 1.06
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Table 4.4: Impedances and maximal allowed current of lines in 50 bus network

Branch Data

from to r0 x0 Imax,0 from to r0 x0 Imax,0

bus bus Ω Ω kA bus bus Ω Ω kA

1 2 0.0083 0.028 1.069 31 32 0.507 0.755 0.035

2 3 0.0298 0.085 0.347 32 33 0.0392 0.036 0.587

3 4 0.0112 0.0366 0.816 34 32 0 0.953 0.033

4 5 0.0625 0.132 0.214 34 35 0.052 0.078 0.333

4 6 0.043 0.148 0.203 35 36 0.043 0.0537 0.454

6 7 0.02 0.102 0.301 36 37 0.029 0.0366 0.669

8 9 0.0099 0.0505 0.606 37 38 0.0651 0.1009 0.261

9 13 0.0481 0.158 0.189 37 39 0.0239 0.0379 0.697

13 15 0.0269 0.0869 0.344 22 38 0.0192 0.0295 0.887

1 15 0.0178 0.091 0.337 11 41 0 0.749 0.043

1 16 0.0454 0.206 0.149 41 42 0.207 0.352 0.077

1 17 0.0238 0.108 0.283 38 44 0.0289 0.0585 0.479

4 18 0 0.555 0.056 15 45 0 0.1042 0.3

10 12 0.0277 0.1262 0.243 14 46 0 0.0735 0.426

11 13 0.0223 0.0732 0.409 46 47 0.023 0.068 0.435

12 16 0.018 0.0813 0.376 48 49 0.0834 0.129 0.203

14 15 0.0171 0.0547 0.545 49 50 0.0801 0.128 0.207

18 19 0.461 0.685 0.038 10 51 0 0.0712 0.438

19 20 0.283 0.434 0.061 13 49 0 0.191 0.164

21 22 0.0736 0.117 0.227 29 52 0.1442 0.187 0.133

22 23 0.0099 0.0152 1.72 53 54 0.1878 0.232 0.105

23 24 0.166 0.256 0.103 54 55 0.1732 0.2265 0.11

24 25 0 1.182 0.027 11 43 0 0.153 0.204

24 26 0 0.0473 0.661 44 45 0.0624 0.1242 0.226

27 28 0.0618 0.0954 0.276 40 56 0 1.195 0.027

28 29 0.0418 0.0587 0.434 56 41 0.553 0.549 0.04

7 29 0 0.0648 0.482 57 56 0.174 0.26 0.1

25 30 0.135 0.202 0.129 9 55 0 0.1205 0.26
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4.1.3 Multiperiod Data

In both test networks, a number of generators has a fixed power value. To rep-

resent the increase in distributed generation, such as renewable energy sources,

and their volatitily, a timeseries of a varying random scaling factor is introduced.

This variation can be caused, for instance by the change in wind speed, when

operating a wind farm. The power injection ptg,i for all generators i in the set of

the fixed generators are multiplied by this factor of timestep t. Fig. 4.3 shows

the timeseries of the scaling factor used in this these for all instances.

Example: In the 30 bus case, generators at bus 11 and 13 have a nominal

non-dispatchable power injection of 1 MW. For timestep t = 4 the scaling factor

equals 1.6, resulting in an active power injection of p4g,i = 1.6 MW for i = 11

and i = 13.

Figure 4.3: Scaling factor vs. time

4.2 Setup and solving

After building the test network architecture with the Julia package PowerMod-

els.jl [35], the instances of the optimization problem are implemented using the

package JuMP.jl [36].

As the created instances result in nonconvex MINLPs or NLPs, a suitable

global solver is needed. For this, the non-commercial global solver for mixed

integer nonlinear programm SCIP v.6.0.1 [37] is used, which is based on a

combined approach of Branch-and-bound and LP relaxations [38]. By emperical
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observation, the implemented presolving was disadvantageous and is turned off.

As local solver, the Interior Point Method [39] is primarily used. All simulations

are performed on a HP ProBook with 2.60GHz Intel Core i5-4210M 1045 MHz

and 8GB memory.
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5 Network expansion − mixed

integer vs. continuous

formulation

In this chapter, three optimization problems considering a network expansion

problem are compared for time horizons T ∈ {1, 2, . . . , 8}. The study is per-

formed on the 30 bus and 57 bus network, described in section 4.1. In the

following, the formulations are presented and the results of the computational

experiments are shown and discussed.

5.1 Problem formulations

The problems are formulated as MIP, representing the MPLP introduced in

Section 3.2.1, cMIP, a similar setup, but with a continuous interpretation of

the network expansion variables, and NLP, described in section 3.2.2. The goal

is to minimize the cost of expansion and cost of generation commitment. Only

the MIP is a mixed integer formulation, the others are continuous.

MIP: min
ptg ,q

t
g ,v

t,

`t,P t,Qt,nik

∑
(i,k)∈E

ciknik +
∑
t∈T

∑
i∈N

Cg
(
ptg,i
)

(5.1)

s.t. (∀t ∈ T )

(3.5)− (3.10)

vi ≤ vi ≤ vi, pi ≤ pi ≤ pi, qi ≤ qi ≤ qi ∀i ∈ N (5.2)

cMIP: min (5.1)

s.t. (∀t ∈ T )

(3.5)− (3.9), (5.2)

1 ≤ nik ≤ nmax, nik ∈ R ∀ (i, k) ∈ E
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NLP: min (1.1)

s.t. (∀t ∈ T )

(1.2)− (1.8), (5.2)

5.2 Results

For all of the instances, a time limit of 1000 s and a primal-dual gap limit of

1 % is chosen. The primal-dual gap is defined by gap% = primal−dual
primal

× 100.

5.2.1 30 Bus Case

Fig. 5.1 shows the solution time (left) of the instances and their primal-dual

gap (right) for global optimality over the length of the considered time horizon

for the 30 bus case.

Considering the MIP, a primal solution is found for a time horizon T = 1

with a primal-dual gap of 24 % and a time limit of 1000 s. For longer time

horizon no primal solution is found in the given time limit for the MIP.

Figure 5.1: Computing time and primal-dual gap for solving MIP (circle),

and the two continuous nonlinear problem cMIP (cross) and NLP

(square) for different time horizons in a 30 bus network to global

optimality using SCIP. Time limit: 1000 s; Gap Limit: 1 %

For all optimized instances of the cMIP primal solutions are found. The lowest

primal-dual gap is found for T = 4 with < 10 %. For the rest of the instances
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the primal-dual gap varies between 9 to 15 per cent.

For all instances in the NLP, the primal-dual gap of the solution can be closed

up to at least 1 % in less than 100 s.

The final objective values of the three formulations are similar for each time

horizon, i.e. all formulations find the same solution if a solution is found, shown

in Table 5.1.

Table 5.1: Objective values of 30 bus case

T MIP cMIP NLP gap = cMIP−NLP
cMIP

1 7945.9 7935.9 7934.8 1.39E-04

2 ∞ 19875.1 19816.6 2.94E-03

3 ∞ 28231.9 28172.6 2.10E-03

4 ∞ 39281.9 39225.9 1.43E-03

5 ∞ 45520.4 45460.6 1.31E-03

6 ∞ 58952.0 58859.3 1.57E-03

7 ∞ 66707.8 66614.4 1.40E-03

8 ∞ 78488.9 78396.4 1.18E-03
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5.2.2 57 Bus Case

Fig. 5.2 shows the solution time (left) of the instances and their primal-dual gap

(right) for global optimality over the length of the considered time horizons for

the 57 bus case. Compared to the 30 bus case, SCIP manages to find solutions

for multiple time horizons in the MIP formulation. Solutions are found for

T = 1, 2, 3 , 5. After the time limit is reached, the primal-dual gap is close to

30 % for T = 1 and around 15 % for the remaining ones.

Figure 5.2: Computing time and primal-dual gap for solving MIP (circle),

and the two continuous nonlinear problem cMIP (cross) and NLP

(square) vs. the length of the considered timehorizon in a 57 bus

network to global optimality using SCIP. Time limit: 1000 s; Gap

Limit: 1 %

In the cMIP a primal solution is found for every evaluated time horizon. The

primal-dual gap at the time limit is similar to the ones of the MIP. For the time

horizons 4, 6, and 8 the gap is closed upto 15 % as well. Only for the time

horizon T = 7, the primal-dual gap deviates strongly from the rest with a gap

> 200 %.

For the NLP formulation the primal-dual gap is closed upto 1 % in less than

300 s, except in T = 6 which results in a gap of > 150 % at 1000 s.

The strong deviation in the resulting primal-dual gap, i.e. MIP: T = 7 and

NLP: T = 5, may result from choices of primal heuristics in SCIP. The primal

solution of most of the instances is found by the local interior point method, but

in these mentioned cases the large neighborhood search heuristic is used which
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does not seem to be a good choice.

Again, for each single time horizon the three formulation find the same final

objective value if a solution is found, shown in Table 5.2.

Table 5.2: Objective values of 57 bus case

T MIP cMIP NLP gap = cMIP−NLP
cMIP

1 16883.7 16880.8 16874.3 3.82E-04

2 37200.3 37147.9 37132.1 4.25E-04

3 53504.3 53368.1 53345.2 4.29E-04

4 ∞ 72564.6 72535.3 4.05E-04

5 86690.5 86336.2 86301.3 4.04E-04

6 ∞ 108931.1 285616.2 -1.62E+00

7 ∞ 346026.5 124412.5 6.40E-01

8 ∞ 144632.4 144583.3 3.39E-04

5.3 Conclusion

Three formulation of an multiperiod Optimal Power Flow (OPF) including net-

work expansion variables are compared on two test cases. As expected, the

NLP outer performs the MIP formulation with respect to computation time, as

mixed inter problems are, in general, harder to solve, but even compared to the

cMIP, the NLP performs significantly better.

In both test networks, the NLP reduces the computation time by at least an

order of ten, in order to find a solution and prove global optimality with up

to 1 %. As all the formulation result in the same objective value and solution,

if found, it is fair to say, that the NLP is good representation of the network

expansion problem.
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6 Convex Relaxations of OPF

constraints

In this chapter, two relaxations of constraints of the OPF, (1.1) - (1.8), are de-

scribed. First an SOCP relaxation of the branch flow constraint (1.5) and suffi-

cient conditions, first proposed in [27], are provided which garuantee exactness

of the relaxation in radial networks. Afterwards, the current limit constraint

(1.6) is relaxed using the McCormick Envelopes.

6.1 Exact Convex Relaxation in Radial Networks

[27] propose a theorem for exactness of a SOCP relaxation under two conditions

that can be checked 1) a priori and 2) a posteriori in [27]. The nonconvex

equality constraint in (1.5) is relaxed to an inequality constraint, which can be

reformulated as a rotated SOC constraint, see 3.3, i.e.:

vi`ij = P 2
ij +Q2

ij ⇒ vi`ij ≥ P 2
ij +Q2

ij (6.1)

SOCP is exact if every of its solutions obtains equality in 6.1 and, hence,

satisfies (1.5). In the following, this theorem is introduced and a new proposition

is formulated to extend the theorem by Gan et al. for the network expansion

planning proposed in this thesis. Let

• The network G = (N,E) be a tree.

• N := {0, . . . , n} denote the set of nodes including the substation node 0,

and N+ := N\ {0}.

• E denote the set of all lines in G.

• The substation voltage, denoted as v0, be fixed and given.
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• Line resistances and reactances be strictly positive, i.e. rij > 0 and xij > 0

for (i, j) ∈ E

• Voltage lower bounds be strictly positive, i.e. vi > 0 for all i ∈ N .

6.1.1 OPF in Radial Networks

Considering radial networks with orientation towards the substation bus 0, the

optimization problem (1.1)-(1.8) for a single period without storage systems

simplifies to

min
sg ,v,

`,S,Imax

∑
(i,j)∈E

cijI
max
ij +

∑
i∈N

Cg (Re(sg,i)) (6.2)

subject to

sj = Sjm −
∑
i:i→j

(Sij − zij`ij) , ∀j ∈ N (6.3)

s0 = −
∑
i:i→j

(Si0 − zi0`i0) , ∀j ∈ N (6.4)

vj = vi − 2Re (zijSij) + |zij|2 `ij, ∀ (i, j) ∈ E (6.5)

vi`ij ≥ |Sij|2 , ∀ (i, j) ∈ E (6.6)

`ij ≤
∣∣Imaxij

∣∣2 ∀ (i, j) ∈ E (6.7)

rijI
max
ij = r0ijI

max,0
ij ∀ (i, j) ∈ E (6.8)

xijI
max
ij = x0

ijI
max,0
ij ∀ (i, j) ∈ E (6.9)

6.1.2 Sufficient Condition

Assume lossless power flow, i.e. zij`ij = 0 for all (i, j) in E, one obtains the

solution of the Linear DistFlow [15], denoted as (Ŝ, v̂), with

Ŝij(s) =
∑
h:i∈Ph

sh, ∀(i, j) ∈ E; (6.10)

v̂i(s) :== v0 + 2
∑

(j,k)∈Pi

Re (zjkSjk) , ∀i ∈ N (6.11)

as illustrated in Fig. 6.1. Both Ŝ and v̂ provide upper bounds on S and v,

respectively [27] and are necessary for the proof of the following theorem.

36
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Figure 6.1: Illustration of Ŝij and v̂ij, shaded region contains buses {h : i ∈ Ph}
downstream of bus i. Dashed lines describe the path Pi from bus i

to bus 0 [27].

Physically, Ŝij denotes the sum of power injections sh in region Ph downstream

of bus i, towards bus 0 that goes through line (i, j). Let a+ := max {a, 0} for

a ∈ R, I := diag (1, 1) denote the 2× 2 identity matrix, and define

ui := uij :=

(
rij

xij

)
, Ai := Ai,j := I − 2

vi

(
rij

xij

)(
P̂+
ij (p) Q̂+

ij (q)
)

for (i, j) in E. Where P̂ and Q̂ denote the real and imaginary part of Ŝ, and

p and q denote the upper bounds of the real and imaginary part of the power

injection s, respectively. At last, let L := {l ∈ N |@k ∈ N such that k → l}
denote the set of leaf buses in the network and Pl be the path from a leaf bus l

to bus 0 with

Pl = {lnl
→ lnl−1 → · · · → l1 → l0}

where lnl
= l and l0 = 0 as illustrated in Fig. 6.2.

Theorem 1 (cf. [27]). Assume that Cg(s0) is strictly increasing, and that there

exists pi and qi such that Si ⊆ {s ∈ C|Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then

SOCP is exact if the following conditions hold:

C1 Als · · ·Alt−1
ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl,

C2 every SOCP solution w = (s, S, v, `, s0) satisfies s ∈ Svolt, where Svolt :=

{s ∈ Cn|v̂(s) ≤ vi for i ∈ N+}
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Figure 6.2: Shaded region contains set of leaf buses L, and the path Pl from leaf

bus l ∈ L to bus 0 as dashed lines [27].

Theorem 1 implies, that if the optimal power injections lie in the region Svolt,

i.e. C2 holds, then SOCP is exact under C1. The theorem is proven in [27] by

a ”proof by contradiction”, for the details the reader is referred to the original

paper. Condition C1 is illustrated through a single feeder network with n + 1

buses as in Fig. 6.3. In this network, the set of leaf buses L only contains the

bus n, the unique path from n to bus 0 is Pn = {n → n − 1 → · · · → 1 → 0},
and C1 takes the form

As · · ·At−1ut > 0, 1 ≤ s ≤ t ≤ n,

i.e. for any given network segment (s− 1, t) where 1 ≤ s ≤ t ≤ n, the multipli-

cation As · · ·At−1 over the segement (s − 1, t − 1) times ut is strictly positive.

Figure 6.3: Illustrating C1: Line segment (s−1, t) in an one feeder network with

n nodes. C1 requires that for any such highlighted line segment in

G the product of A over (s− 1, t− 1) and ut is greater than zero
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6.1.3 Extension to Network Expansion Planning

A new proposition is introduced to extend this theorem for the network expan-

sion problem.

Proposition 1. If (r, x) ≤ (r′, x′) and C1 holds for (r′, x′, p, q, v), then C1 also

holds for (r, x, p, q, v)

Three remarks can be drawn from this proposition. Firstly, Proposition 1

implies that the smaller the resistance and reactance is for the lines, the more

likely C1 holds. As the resistance and reactance are anti-propotional to the

maximal allowed current on a line (see (6.8) and (6.9)), network expansion

benefits C1.

Secondly, it means that if C1 holds to begin with, i.e. for the initial param-

eters of the lines, it will also hold after the optimization due to the fact that

existing lines are reinforeced only.

Finally, if C1 does not hold with the initial parameter of the lines, it may

hold after performing the optimized network expansion and the SOCP becomes

exact if C2 holds. To prove Proposition 1, the following Lemma is introduced.

It is adapted from Lemma 3 in [27] by focusing on the line parameters r and x

rather than on power injection.

Lemma 1. Given m ≥ 1 and d ≥ 1. Let A1 · · ·Am−1, A1 · · ·Am−1 ∈ Rd×d,

bTk ≥ 0, and u1, . . . , um ∈ Rd satisfy

• As · · ·At−1ut > 0 when 1 ≥ s ≥ t ≥ m;

• there exists ∆uk ∈ Rd, with ∆uk ≥ 0 and Ak−Ak = (uk−uk)bTk = ∆ukb
T
k ,

for k = 1, . . . ,m− 1

Then

As · · ·At−1ut ≥ As · · ·At−1ut > 0 (6.12)

when 1 ≤ s ≤ t ≤ m for any ut > 0.

Proof. (6.12) is proven by mathematical induction on the length of the segment

t− s.

i) Base Case: When t−s = 0, one has As · · ·At−1ut = ut ≥ As · · ·At−1ut > 0.

So, (6.12) holds.
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ii) Inductive Step: Assume (6.12) holds when t − s = 0, 1, . . . , K (0 ≤ K ≤
m− 2). When t− s = K + 1, one has

As · · ·AkAk+1 · · ·At−1ut =As · · ·Ak−1Ak · · ·At−1ut
+ As · · ·Ak−1(Ak − Ak)Ak+1 · · ·At−1ut

(6.13)

=Aut + As · · ·Ak−1(uk − uk)bTkAk+1 · · ·At−1ut
(6.14)

where A = As · · ·Ak−1Ak · · ·At−1. (6.13) is obtained by adding and sub-

tracting the term As · · ·Ak−1Ak · · ·At−1ut. With bTkAk+1 · · ·At−1ut ∈ R, it

follows for (6.14)

As · · ·AkAk+1 · · ·At−1ut =Aut + (bTkAk+1 · · ·At−1ut)As · · ·Ak−1(uk − uk)

=Aut + (bTkAk+1 · · ·At−1ut)As · · ·Ak−1(∆uk)
(6.15)

for k = s, . . . , t−1. Since bTk ≥ 0, Ak+1 · · ·At−1ut > 0. ∆uk ≥ 0. According

to induction hypothesis, As · · ·Ak−1uk > 0 and since uk ≥ uk it follows that

the term As · · ·Ak−1∆uk ≥ 0. Hence,

As · · ·AkAk+1 · · ·At−1ut ≥ As · · ·Ak−1Ak · · ·At−1ut (6.16)

for k = s, . . . , t− 1. By substituting k = t− 1, . . . , s in turn, one obtains

As · · ·At−1ut ≥ As · · ·At−2At−1ut ≥ · · · ≥ As · · ·At−1ut > 0, (6.17)

so (6.12) holds when t− s = K + 1.

According to i) and ii), (6.12) holds when t − s = 0, . . . ,m − 1. This

completes the proof of Lemma 1

With this lemma, the proof of Proposition 1 follows:

Proof. Let A′ and A denote the matrices with respect to (r′, x′) and (r, x),

respectively, i.e.

A′i := I − 2

vi
u′i

(
P̂+
ij (p) Q̂+

ij (q)
)

and Ai := I − 2

vi
ui

(
P̂+
ij (p) Q̂+

ij (q)
)
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with u′i =
(
r′ij x′ij

)T
and ui =

(
r′ij xij

)T
for any (i, j) ∈ E. For any edge

(i, j) in G, one has

Ai − A′i =
2

vi
(u′i − ui)

(
P̂+
ij Q̂+

ij

)
= ∆ui

2

vi

(
P̂+
ij Q̂+

ij

)
= ∆uib

T
i

where bTi = 2
vi

(
P̂+
ij Q̂+

ij

)
≥ 0. When (r, x) ≤ (r′, x′), then

∆ui =

(
r′ij − rij
x′ij − xij

)
≥ 0

for any (i, j) ∈ E. If C1 holds for (r′, x′), i.e. A′s · · ·A′t−1u′t > 0 for any l ∈ L
and any s, t such that 1 ≤ s ≤ t ≤ nl, then it follows from Lemma 1 that

As · · ·At−1u′t ≥
C1︷ ︸︸ ︷

A′s · · ·A′t−1u′t > 0

From (6.8) and (6.9) it follows that the ratio of rij and xij,
rij
xij

, for all (i, j) ∈ E
is constant, when performing network expansion. Thus, one can replac u′t by ut

with u′t = ntut with nt ≥ 1 and nt ∈ R yielding

As · · ·At−1ut > 0

for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl. Hence, C1 holds also for

(r, x), which completes the proof of Proposition 1.

With Proposition 1 proven, Theorem 1 can be reformulated as follows

Theorem 2. Assume that Cg(s0) is strictly increasing, that there exists pi and

qi such that Si ⊆ {s ∈ C|Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+, and there exists

rij and xij such that zij ⊆ {z ∈ C|Re(z) ≤ rij, Im(z) ≤ xij} for (i, j) ∈ E. Then

SOCP is exact if the following conditions hold:

C1 Als · · ·Alt−1
ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl,

C2 every SOCP solution w = (s, S, v, `, s0) satisfies s ∈ Svolt, where Svolt :=

{s ∈ Cn|v̂(s) ≤ vi for i ∈ N+}
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The interpretation of the theorem is similar to the one given in section 6.1.2

only with the extension of the line variables z. With the Proposition 1, it is made

sure that the condition will hold considering smaller values of z, i.e. reinforced

lines. The first condition C1 may be checked a priori but may improve with the

optimization problem, see Proposition 1. The second condition C2 can only be

check a posteriori as the solution for s is needed.

6.2 Relaxation of nonconvex current limit

constraint

Figure 6.4: Convex relaxation of the nonconvex quadratic inequality current

limit constraint

Another nonconvex constraint is the current limit constraint (1.6). To relax

this constraint to a convex one, the overestimator from the McCormick En-

velopes is used. McCormick Envelopes are a type of convex relaxation often

used in bilinear NLP to describe the convex hull of a bilinear term of the form

z = xy where xL ≤ x ≤ xU and yL ≤ y ≤ yU [40]. They give a convex

underestimator, (6.18)-6.19, and overestimator, (6.20)-(6.21), of the form

z ≥ xLy + xyL − xLyL (6.18)

z ≥ xUy + xyU − xUyU (6.19)
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z ≤ xLy + xyU − xLyU (6.20)

z ≤ xUy + xyL − xUyL (6.21)

Let z = I2max with Ilb ≤ Imax ≤ Iub, then the McCormick overestimators,

(6.20)-(6.21), give the same upperbound (Ilb = xL = yL and Iub = xU = yU)

with

z ≤ (Ilb + Iub) Imax − IlbIub. (6.22)

Using this upper bound as an upper bound on the current, the current limit

constraint turns into

` ≤ |Imax|2 ⇒ ` ≤ (Ilb + Iub) Imax − IlbIub, (6.23)

which is illustrated in Fig. 6.4. It is not proven that this relaxation will be

exact, i.e. ` ≤ |Imax|2, but the following arguments give intuition, why this

relaxation is valid and may result in an exact solution.

As the network planning problem, formulated in this thesis (1.1)-(1.8), consid-

ers a continuous expansion variables, in reality expansion of lines can be done

in whole number only. Hence, the actual expansion will be the next largest

number of the optimized value to ensure feasibility, which results in a greater

margin between maximal allowed current and current flow.

Additionally, to provide security of supply if one line fails, medium voltage

distribution networks are operated in an open ring structure. In the case if a

line failure consumers are supplied from the other side of the ring. This in mind,

assumptions are made in [6] and [2] that the flow over a line should not exceed

60 % of the thermal limit of the line when considering the so-called load case.
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7 Numerical Study of Multiperiod

OPF

In this chapter, three optimization problems considering a network expansion

problem including storage systems are applied on for the 30 bus and 57 bus

network, described in section 4.1. For each formulation, instances are created

for time horizons T ∈ {1, 2, . . . , 7, 8, 10, 15} with a timestep length Ts = 1.

As the test network do not include any storage systems, a storage is added

for any non-dispatchable volatile generator at the associated bus in the test

networks. The storage data is shown in Table 7.1.

Table 7.1: Storage Data

Test Buses e uc ud ηc ηd

network with storage MWh MW MW − −
30 bus network 11, 13 1.0 0.5 0.5 0.9 0.9

57 bus network 2, 6, 9 1.0 0.5 0.5 0.9 0.9

In the following, the formulations are presented and the results of the com-

putational experiments are shown and discussed.

7.1 Formulations of Multiperiod OPF

The first formulation, OPF, represents the BFM with the original power flow

equation, described in section 3.1, including the network expansion variables

from section 3.2.2, and storage dynamics, i.e. relaxed complementary constraint

(7.2), and state-of-charge over time (7.3) with periodic boundary conditions

(7.4).

OPF: min
ptg ,q

t
g ,v

t,

`t,P t,Qt,Imax

∑
(i,k)∈E

cikI
max
ik +

∑
t∈T

∑
i∈N

Cg
(
ptg,i
)

(7.1)
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s.t. (∀t ∈ T )

(1.2)− (1.8)

utc,i ≤ −

(
Rmax
c,i

Rmax
d,i

)
utd,i +Rmax

c,i ∀i ∈ S (7.2)

Ts

(
ηc,iu

t
c,i −

utd,i
ηd,i

)
= et+1

i − eti ∀i ∈ S (7.3)

eT+1
i = e0i ∀i ∈ S (7.4)

The second formulation, crOPF, contains the same constraints as in the

OPF, but using the McCormick overestimator for the current limit constraint

from section 6.2.

crOPF: min (7.1)

s.t. (∀t ∈ T )

(1.2)− (1.5), (1.7), (1.8),

(7.2)− (7.4),

` ≤ (Ilb + Iub) I
max
ik − IlbIub, ∀(i, j) ∈ E (7.5)

The third formulation, SOC-crOPF, is similar to crOPF, but uses the SOCP

relaxation of the branch flow constraint, explained in section 6.1.

SOC-crOPF: min (7.1)

s.t. (∀t ∈ T )

(1.2)− (1.5), (1.7), (1.8),

(7.2)− (7.4), (7.5)

vi`ij ≥ P 2
ij +Q2

ij, ∀ (i, j) ∈ E (7.6)

7.2 Results

For all of the instances, a time limit of 3000 s and a primal-dual gap limit of

1 % is chosen. The primal-dual gap is defined by gap% = primal−dual
primal

× 100.
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7.2.1 30 Bus Case

Fig. 7.1 shows the computing time to find a solution and to prove global optimal-

ity with up to a primal-dual gap of 1 % for the OPF, crOPF, and SOC-crOPF

formulation. Except for time horizons of length T = 8, 10, 15 in the crOPF

formulation, all instances are solved to global optimality in less than 1000 s.

Figure 7.1: Computing time to find and prove global optimum (duality-gap < 1

%) using SCIP for OPF (circle), crOPF (cross), and SOC-crOPF

(square) minimizing with respect to network expansion and genera-

tor use in a 30 bus test network including a storage systems at each

fixed generator (two in total)

It is observed that solving the SOC-crOPF is faster with an order of ten

compared to the other formulations. For time horizon T = 15, it is even two

order of ten faster. Furthermore, even though the crOPF has less nonconvex

constraints, it is not solved any faster than the OPF. For longer time horizon it

performs worse than OPF. The solution time to prove global optimality inclines

exponentially with respect to the time horizon (linear incline in a semi-log plot).

The optimality gap between OPF and SOC-crOPF is zero for all considered

time horizons, see Table 7.2, resulting in an exact solution for the SOC-crOPF.
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Table 7.2: Objective values of 30 bus case

T OPF crOPF SOC-crOPF gap = OPF−SOC-crOPF
OPF

1 7934.771266 7935.223386 7934.771061 10−8

2 19553.11583 19553.11583 19553.115 10−8

3 27906.44965 27906.44965 27906.44924 10−8

4 38907.8019 38907.80200 38907.80151 10−8

5 44822.49685 44822.49685 44822.49611 10−8

6 57829.24982 57829.24982 57829.24906 10−8

7 65543.34456 65543.34456 65543.34362 10−8

8 77202.29642 96265.11381 77202.29541 10−8

10 88471.76958 162762.7453 88471.76805 10−8

15 139485.766 158852.0403 139485.7641 10−8

7.2.2 57 Bus Case

Fig. 7.2 shows the computing time to solve the instances up to a primal-dual

gap of 1 % for the OPF, crOPF, and SOC-crOPF for the 57 bus network with

a time limit of 3000 s. The primal-dual gap is shown in Fig. 7.3.

Whenever the time limit is reached the gap is greater than 1 %. For time

horizons T = 10, 15 for OPF the gap is at 4 % and ∞, respectively, i.e. the

OPF has not found a primal solution for T = 15 yet. Considering the crOPF,

for time horizons T = 4, 5, 6, 7, 8, 15, the primal-dual gap is closed up to 3 % at

most, for T = 4 it is > 40 %.

In total, one can say, that the SOC-crOPF is solved significantly faster than

the other two formulations. However, for time horizons T = 2, 3, 4 the solution

time rises for the OPF and SOC-crOPF, then drops for larger horizons again

and differs compared to SOC-crOPF for the other time horizons more than two

orders of tens.

There may be multiple reasons which cause this behaviour. On the one hand,

this could be a statistical error and by adjusting these problem instances slightly,

this deviation would disappear.

On the other hand, this behaviour could be systemically. A systemically rea-

son could be the impact of the cost ratio between generation costs and expansion

costs. The expansion costs do not depend on the length of the time horizon,

whereas the generation costs rise as the time horizons get longer, which will be

studied in the next section.
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Table 7.3 shows the objective values for all formulation and the optimality

gap between the OPF and SOC-crOPF. The optimality gap is in order of 10−4.

Thus, the SOC-crOPF gives a very good lower bound on the OPF problem.

Only for time horizons T = 10, 15, the gap is larger. As pointed out before,

these are the time horizons for which SCIP could not a) close the primal-dual

gap below 1 % and b) find a primal solution in the given time limit.

Figure 7.2: Computing time to find and prove global optimum (duality-gap < 1

%) using SCIP for OPF (circle), crOPF (cross), and SOC-crOPF

(square) in a 57 bus test network including a storage systems at each

fixed generator (three in total)
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Figure 7.3: Primal-dual gap using SCIP for OPF (circle), crOPF (cross), and

SOC-crOPF (square) in a 57 bus test network including a storage

systems at each fixed generator (three in total)

Table 7.3: Objective values of 57 bus case

T OPF crOPF SOC-crOPF gap = OPF−SOC-crOPF
OPF

1 16874.34936 16874.34936 16864.87517 5.61E-04

2 36824.45775 36824.45775 36806.31846 4.93E-04

3 53015.28495 53015.28495 52994.18688 3.98E-04

4 72098.50818 101193.77408 72074.69844 3.30E-04

5 85722.93405 87688.99377 85698.09105 2.90E-04

6 107134.34474 112667.72942 107107.36573 2.52E-04

7 122617.83226 125246.42911 122589.58825 2.30E-04

8 142434.53585 146116.67431 142404.95658 2.08E-04

10 175135.70817 169057.78201 169025.90442 3.49E-02

15 ∞ 265919.98139 260166.00327 −
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7.3 Sensitivity study

In the following, a a sensitiviy study is performed on the cost weights of the ex-

pansion costs cik. The cost factor is chosen from the set C = {0.1, 1, 10, 100, 1000}.
The sensitivity study is performed on the SOC-crOPF formulation for the 57

bus network. Again, a time limit of 3000 s and a primal-dual gap limit of 1 %

is chosen for solving the problem with SCIP.

7.3.1 57 Bus Case

Fig.7.4 shows the computing time of the SOC-crOPF formulation for three time

horizons, T = 2, 3, 4, over the cost weights cik for the 57 bus network. Small

cost weights resulting in solution times less than 10 seconds. For a cost weight

of 1000 the primal-dual gap is closed to less than 1 % in under 10 s as well. For

cost weights 10 and 100 the solution time increase in multiple orders of ten.

Figure 7.4: Computing time to find and prove global optimum (duality-gap < 1

%) in the SOC-crOPF with different weights of costs for three time

horizons in the 57 bus network

Fig. 7.5 shows the change in variables for different weights of the expansion

costs. On the left, to represent the change in variables for the maximal allowed

current flow, i.e. the network expansion, all line capacities are summed. A

exponential decline is observed over the increase of the attached cost weights.

Whereas, on the right, the total generation costs are all most constant.
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Figure 7.5: Change in variables for maximal allowed current flow (left) and

power generation (right) over cost weights of network expansion for

time horizons T = 2, 3, 4 in the 57 bus network.

As the power injections directly depend on fixed generations and demand in

the network, network expansion is used 1) to reinforce lines whenever overload

or violation on voltage bounds are expected, and 2) to reduce losses over lines.

Thus, the increase in costs for network expansion forces to find the minimal

expansion needed for feasibility reasons. Whereas, the decrease in costs allows

excessive network expansion to reduce losses in the system.

7.4 Conclusion

In this chapter, computational experiments are performed on the original mul-

tiperiod OPF and two similar formulation containing relaxations of nonconvex

constraints, introduced in chapter 6. In particular through the SOC relaxation,

a significant speed-up to find globally optimal solutions is obtaind. For the 30

bus network the relaxation resulted in an exact solution, while it provided a

very good lower bound for the 57 bus network.

A sensitive study on the cost weights of the network expansion variable shows

that 1) solution time might depend on the ratio of network expansion costs and

generation costs, and 2) the impact of the weights of network expansion cost

is much greater on the actual network expansion variable than on the power

generation.
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8.1 Summary

The recent development of medium voltage distribution networks, in particu-

lar the incline of complexity through a number of flexibility options in these

networks, motivates to investigate OPF formulations including these options to

ensure a cost optimal system operation and planning. For instance, managing

distributed RES and storage systems may play an increasing role in avoiding

necessary network expansion. However, these components introduce a temporal

coupling into the problem resulting in a multiperiod OPF.

As valid assumptions to solve a linearized OPF in transmission networks fail

in distribution networks, a nonlinear formulation has to be considered. In this

thesis, such a nonlinear multiperiod OPF problem includes storage systems and

a continuous representation of network expansion and is presented in Section

1.2.

Network expansion is usually formulated in a MIP which is in general hard to

solve. In this work, a continuous representation of the network expansion prob-

lem is provided by introducing continuous variables for technical parameters of

the lines, i.e. maximal allowed current, resistance and reactance. This approach

is validated successfully against a common mixed integer approach on a 30 and

57 bus network, resulting in an significant speed-up, see Chapter 5.

However, nonconvexities arise by the power flow equations as well as by the

network expansion variables resulting again in a generally hard solvable opti-

mization problem. Thus, convexifying the problem through relaxations of the

nonconvexities is investigated. A new proposition is introduced and proven to

extend earlier proposed sufficient conditions, see [27] and Chapter 7, to guar-

antee exactness of an SOCP relaxation of the branch flow constraint in radial

networks including network expansion. Additionally, the McCormick overesti-

mator is used to relax the current limit constraint.

These relaxations are then applied on the original proposed multiperiod OPF
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and numerical experiments are performed on a 30 and 57 bus network in Chapter

7. In partiular, with the SOCP relaxation a massive speed-up in computing time

is gained to find and prove global optimality. Further, the experiment show that

the SOCP relaxation gives either an exact solution of the problem or a good

lower bound on the solution.

Finally, a sensitive study on the cost weights of the network expansion vari-

ables is performed showing that the actual performed expansion depends strongly

on the network expansion costs, whereas − as expected − almost no impact on

the power generation is detected. Also, the weights of network expansion costs

affect the computing time. But, further experiments are needed to verify if this

is a statistical or systemically behaviour.

8.2 Future Research

This thesis constitutes an analysis of a continuous formulation of the network ex-

pansion planning problem. It motiviates a number of future research directions.

Future research should conists of both further analysis of the nonconvexities in

the problem and further numerical studies.

Even by introducing a SOCP relaxation of the branch flow constraint and the

McCormick overestimator (see Chapter 6), the multiperiod OPF in this thesis

still consists of quadratic equality constraints, e.g. the terms with r` or x` in

the voltage differences between the buses (1.4), which are nonconvex.

To use the characteristic of convex problems, i.e. every local optimum is a

global optimum, one should look into relaxing the problem further to obtain

a convex problem. Additionally, it should be examined whether the sufficient

conditions, presented in Chapter 6, are suitable for real network data.

The numerical studies performed in this thesis consider two small test net-

works and a single time series. To gain more knowledge about the behaviour of

the problems, one should apply the discussed formulations on real network data

as real distribution grids can contain around 250 buses [7], and on a variation

of time series to investigate uncertainties in forecast and statistical behaviour

of the problems. Furthermore, to use the potential of a multiperiod approach

fully, longer time horizons should be taken into account.

These extensions − larger networks and longer time horizons − lead to a

significant increase in the number of variables and constraints. In particular,

reducing temporal complexity may result in a substantial improvement, possible
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keywords are aggregation or clustering of time periods.

Another way to reduce variables in the problem would be to identify critical

parts of the network a priori, e.g. by a power flow analysis [7], to define a subset

of candidate lines which may be reinforced, followed by the actual optimization.

Moreover, there are a number of flexibility options which may be used to avoid

network expansion and should be integrated into the problem formulation [31].

In this thesis, storage systems are already installed with a given capacity at

non-dispatchable generators, but these may not be optimal. Hence, optimizing

storage capacity and position may reduce necessary network expansion further.

Another flexibility options, which should be taken into account, is the cur-

tailment of renewable energy sources through out the network. In the Germany

for instance, annual curtailment of around 2 percentage of the possible power

generation by renewable energy sources is allowed by law [41].
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(Verteilernetzstudie),” tech. rep., BMWi, 2014. Available online:

https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/

verteilernetzstudie.pdf?__blob=publicationFile&v=5 (accessed

on 21 November 2019).
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Land Baden-Württemberg,” tech. rep., ef.Ruhr GmbH, 2017.

57

https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/verteilernetzstudie.pdf?__blob= publicationFile&v=5
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/verteilernetzstudie.pdf?__blob= publicationFile&v=5
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Energiesysteme/dena-Verteilnetzstudie/denaVNS_Ergebniszusammenfassung_PSG.pdf
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Energiesysteme/dena-Verteilnetzstudie/denaVNS_Ergebniszusammenfassung_PSG.pdf
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Energiesysteme/dena-Verteilnetzstudie/denaVNS_Ergebniszusammenfassung_PSG.pdf
https://www.gesetze-im-internet.de/enwg_2005/BJNR197010005.html
https://www.gesetze-im-internet.de/enwg_2005/BJNR197010005.html


Bibliography

[7] U. P. Müller, B. Schachler, W.-D. Bunke, J. Bartels, M. Glauer, C. Büttner,
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