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A B S T R A C T

Model-based scenario analyses of future energy systems often come to deviating results and conclusions when
different models are used. This may be caused by heterogeneous input data and by inherent differences in
model formulations. The representation of technologies for the conversion, storage, use, and transport of
energy is usually stylized in comprehensive system models in order to limit the size of the mathematical
problem, and may substantially differ between models. This paper presents a systematic comparison of
nine power sector models with sector coupling. We analyze the impact of differences in the representation
of technologies, optimization approaches, and further model features on model outcomes. The comparison
uses fully harmonized input data and highly simplified system configurations to isolate and quantify model-
specific effects. We identify structural differences in terms of the optimization approach between the models.
Furthermore, we find substantial differences in technology modeling primarily for battery electric vehicles,
reservoir hydro power, power transmission, and demand response. These depend largely on the specific focus
of the models. In model analyses where these technologies are a relevant factor, it is therefore important to be
aware of potential effects of the chosen modeling approach. For the detailed analysis of the effect of individual
differences in technology modeling and model features, the chosen approach of highly simplified test cases is
suitable, as it allows to isolate the effects of model-specific differences on results. However, it strongly limits
the model’s degrees of freedom, which reduces its suitability for the evaluation of fundamentally different

modeling approaches.
. Introduction

.1. Background and motivation

In the European Green Deal, the European Commission has pro-
osed ambitious emission reduction targets for the period from 2021

∗ Corresponding author at: German Aerospace Center (DLR), Institute of Networked Energy Systems, Curiestr. 4, 70563 Stuttgart, Germany.
E-mail address: hans-christian.gils@dlr.de (H.C. Gils).

to 2030 with the aim of achieving climate neutrality by 2050 [1]. To
achieve this, the transformation of the energy system towards green
technologies has to be accelerated. In the power sector, this requires a
switch primarily to variable renewable energy (VRE) technologies such
as wind and solar photovoltaics (PV), whose output strongly depends
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List of abbreviations

BEV battery electric vehicles
BL base load
CC controlled charging
CHP combined heat and power
COP coefficient of performance
DC direct current
DR demand response
EES electric energy storage
HP heat pumps
LP linear programming
LT long term
MILP mixed-integer linear programming
PB peak boiler
PL peak load
PV photovoltaics
QP quadratic programming
ST short term
TES thermal energy storage
TPP thermal power plants
UPGMC Unweighted Pair-Group Method using Cen-

troids
V2G vehicle-to-grid
VRE variable renewable energy

on regional and local weather conditions [2]. As a consequence, the
need for system flexibility increases, since power supply and demand
have to be balanced in real-time to ensure the security of supply. This
flexibility can be provided by different technologies, including control-
lable power plants, energy storage, transmission grids, or demand-side
management [3].

Numerous optimization models have been developed in recent years
to provide scientific support in evaluating strategies for the future
development of energy supply systems [4]. However, analyses on the
future design of the energy system and its operation based on the ap-
plication of these models usually come to different conclusions [5]. On
the one hand, this is driven by different assumptions in the model input
data, and on the other hand by differences in model formulations. Mod-
els for the analysis of national energy system transformation scenarios
usually differ in their spatio-temporal granularity, and technological
scope and detail. Limited computational capacities that are still prevail-
ing today, pose a trade-off between these two dimensions [6]. A high
spatio-temporal granularity comes at the cost of strong simplifications
of the representation of technology properties. These simplifications
can differ widely between models. This affects power sector modeling
with regard to controllable power plants and combined heat and power
(CHP) plants, electric energy storage (EES), transmission grids and
demand-side management. The latter includes demand response (DR)
of industrial and commercial loads as well as the flexible operation of
sector coupling technologies, such as battery electric vehicles (BEV),
electric heat pumps (HP) and electrolyzers for the production of hy-
drogen. The evaluation of different modeling approaches and their
impact on results thus requires focused model comparisons that sepa-
rate the effect of differences in the spatial, temporal, and technological
granularity as well as input data used.

1.2. State of research

The literature offers a wide variety of energy system model com-
2

parisons (Table 1). These studies can be classified into theoretical f
comparisons of models (category I), comparisons with a specific techno-
logical focus (category II), and comparisons including the harmonized
application of different models (category III).

The focus of publications within category I is on comparing a
wide range of model functionalities and properties to benchmark and
categorize them. This provides energy system modelers and policy
makers with a better overview of the existing modeling landscape
and supports the selection of a suitable model for a specific research
question [14]. Due to the large number of models and the complexity
within their implementations a wide variety of studies tries to develop
new classification or clustering schemes. Most recent works include
Klemm and Vennemann [18] for multi-energy systems, Ridha et al. [15]
for complexity comparison, and Prina et al. [16] for bottom-up energy
system models. The implications of different modeling approaches on
the quality of the results remain largely unclear in those studies.

Category II includes publications that examine specific technical
aspects or detailed modeling differences. Their results can help to
find the right approaches for future modeling. The comparison, how-
ever, is usually based on only one or a few models. To understand
the differences between models in depth, a more holistic analysis is
required.

In Category III, there are only a few publications with a harmonized,
scenario-based comparisons of modeling approaches. Gils et al. [23]
performed a systematic comparison with four high resolution power
sector models in three scenarios. Siala et al. [24] conducted inter- and
intramodel comparisons with five power sector models. Both studies
show that even with an unified input data set the results are often not
identical. Differences in the implementation of technologies or scenario
constraints can lead to a divergent use of flexibility options. However,
due to the high complexity of the defined scenarios the causes of the
deviations are difficult to investigate.

1.3. Contribution of this paper

Complementing previous literature, this paper is devoted to a sys-
tematic, quantitative comparison of optimization and technology mod-
eling approaches in nine models1. It is based on a uniform model scope
as well as fully harmonized input data. Our work aims at identifying
and evaluating the most important differences in the approaches for
modeling flexibility in power sector models that include sector cou-
pling options. We systematically contrast optimization and technology
modeling approaches, quantify their impact on results and determine
pivotal aspects for comparing them across models. To address short-
comings of previous model comparisons, we rely on the analysis of
simplified model test cases. To isolate potential differences in results
and to analyze their drivers, each test cases is focused on one flexibility
option. We model the hourly use of flexibility options over the course
of a year, with a focus on supply systems with a high VRE share. While
the hourly deployment during one year is endogenously optimized
in the model comparison, the available plant capacities are exoge-
nous. The quantitative model comparison is based on standardized
indicators representing use patterns of the hourly system operation.
Compared to previous work, we include a higher number of models in
the comparison. This increases the range of modeling approaches and
model features considered, allowing more representative results to be
obtained.

The paper is divided into three main parts. Section 2 sets out
the methodology of the model comparison. Based on this, Section 3
presents the modeling results and associates differences in results with
the model approaches. Finally, Section 4 summarizes and concludes.

1 The models compared in this paper are modeling frameworks, which
llow for modeling a large variety of applications that may differ in terms of
patio-temporal granularity and technological scope. Since this is the much
ore common term, this text uses a consistent designation as models, not

rameworks.
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Table 1
Literature overview on the comparison of energy system models.

Reference Goals and conclusions

Category I: theoretical model comparisons

[4] Review of 75 models for the analysis of energy transformation pathways for
small-scale to global long-term energy systems. Identifies seven key
characteristics pivotal to evaluating VRE integration.

[7] Comparison of 68 models to assist decision makers in choosing a suitable
analysis tool with a focus on integrating VRE into the energy system.

[8] Comparison of how models address the aspects of temporal and spatial
resolution, balancing uncertainties and transparency, growing energy system
complexity, and integration of human behavior and social risks. Urges a
transformation of models to ensure future applicability.

[9] Comparison of the representation of EES and transmission networks in
long-term electricity models. Concludes that a combination of the advantages
of the different model perspectives has not yet taken place.

[10] Non-comprehensive classification of energy system models in the United
Kingdom since 2008. Aims to increase the accessibility of the variety of
models both to researchers and policy makers.

[11] Identification of 67 relevant models that are capable of simulating various
aspects with regard to BEV and their integration into power grids.

[12] Review of 21 expansion planning energy models with a specific focus in
policy instruments for VRE integration and decision-support models for energy
policy analysis.

[13] Evaluation of characteristics of national energy system models. Shows that
there is a trend to focus on VRE integration. This leads to more flexible
approaches with regard to spatial and temporal resolution. Moreover, there is
a tendency towards open source.

[14] Analysis of the ability of energy models to address policy questions. Identifies
different terminologies and classification schemes and applies them to 40
selected models.

[15] Introduction of a clustering approach for energy system models and
evaluation of around 150 fact sheets. The main clusters are temporal, spatial,
mathematical and modeling content complexity.

[16] Evaluation of existing classification schemes of bottom-up energy system
models. Identifies the concept of resolution as the main indicator. The models
in the study show a high resolution in specific fields but lack precision across
all fields.

[17] Identification of seven major challenges in modeling low-carbon energy
systems and analyses with a multi-criteria approach, which of 19 models are
best suited for addressing those. Finally, it suggests two conceptual modeling
suites for bridging the major gaps.

[18] Identification of models that are suitable to optimize multi-energy systems.
Defines a set of characteristics important for modeling them and shows that
out of 145 models only few can fulfill the requirements for multi-energy
systems optimization.

Category II: specific model comparisons

[19] Comparison of three energy models in a case study on the Corvo Island in
Portugal. The results show that such models should consider adjustments in
their optimization strategies to allow for a better and more cost effective
usage of flexible technologies.

[20] Comparison of linear programming (LP) and mixed-integer linear
programming (MILP) formulation for power plants in an hourly-resolved
model. It shows that at low VRE shares LP underestimates storage demand, as
it neglects technical restrictions that affect operating costs.

[21] Investigation of the hypothesis that complexity correlates with higher accuracy
of results on the basis of 160 modeling configurations. Identifies complexity
drivers and model extensions that contribute to significant result accuracy.

[22] Analysis of the applicability of expansion planning models. Evaluates
advantages and disadvantages of the three defined model categories
optimization model, equilibrium models and alternative models without an
optimal VRE integration.

Category III: comparisons including the harmonized application of different models

[23] Evaluation of three sector-coupled power systems for Germany in 2050 using
four different models. The paper highlights the importance of harmonized
input data and the need for simplified test cases for gaining detailed insight
into the impact of model differences.

[24] Evaluation of the impact of model type, planning horizon, temporal and
spatial resolution by comparing five power sector models with harmonized
input data and characteristics. Concludes that harmonization is crucial for
understanding deviations in results.
3
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Table 2
Overview of investigated test cases and contributing model versions. A cross (X) stands for the participation of the models in the test cases. A dot (•) means that the models offer
the possibility to consider the analyzed flexibility options, but this was not applied in the test cases investigated here.

Test case label Analyzed flexibility option DIETER E2M2 GENESYS-2 ISAaR JMM MarS oemof REMix RESTORE

TPP(PL/LP) peak load (PL) power plants LP X X X X X X • X X
TPP(BL/LP) base load (BL) power plants LP X X X X X X • X
TPP(BL/MILP) BL power plants MILP X X X • •
ResHydro Reservoir hydro power X X X • X X X X •
EES(ST) short term (ST) EES X X X • X X • X X
EES(LT) long term (LT) EES X X X • X • X X
EES(ST+LT) ST and LT EES X X X • • • X X
PowGrid Power transmission X X X X X X X X X
DR Demand response X • • X • X X
HP+TES Electric HP with thermal storagea X • X X X X •
BEV(CC) BEV with controlled charginga X • • X X • X X
BEV(V2G) BEV with bidirectional charginga X • • X X X X X
H2+Stor Hydrogen electrolyzers with storagea • X • X • X X
CHP(BP) Backpressure (BP) CHP X X X X X X
CHP(Ex) Extraction (Ex) CHP X X X X X X
CHP(BP)+PB Backpressure CHP with peak boiler • X X X X
CHP(Ex)+PB Extraction CHP with peak boiler • X X X X
FlexHeatNetw Flexible heating network • X • X X

aPeak load power plants are also available.
2. Materials and methods

This section describes the framework of the model comparison.
First, the procedure for conducting the model comparison and the
data used are described in Sections 2.1 and 2.2, respectively. Second,
the models involved are introduced in Section 2.3, and their main
differences are outlined in Section 2.4. Third, the indicators used for
the comparison are characterized in Section 2.5.

2.1. Set-up of the model comparison

The model test cases represent a highly simplified system consisting
of electricity demand, VRE power generation from wind and PV, and
one, in exceptional cases two, flexibility options. In addition, in the
sector coupling test cases, heat demand, hydrogen demand, and BEV
charging electricity are considered. To match demand and generation,
the models can use the respective flexibility option as well as VRE
curtailment and uncontrolled load shedding. However, the latter is
associated with very high costs. In total, we separately consider 18
flexibility options in individual test cases (Table 2). They focus on
different types of thermal power plants (TPP) and EES, electricity trans-
mission grids, DR in industry and commerce, and various flexible sector
coupling technologies. The latter includes electric air-to-water building
HP with thermal energy storage (TES), BEV with controlled charging
(CC) and vehicle-to-grid (V2G), decentralized hydrogen electrolysis
with tank storage, and CHP. CHP is analyzed for backpressure plants
and extraction condensation plants, in each case separately for stand-
alone plants and plants combined with a peak boiler (PB). In addition,
extraction condensation CHP is also analyzed as part of a flexible heat
network with PB, electric boiler, HP and TES. Since these only provide
demand-side flexibility but not a power supply option, the test cases on
HP, BEV, and hydrogen electrolysis include peak load power plants in
addition to renewable power generation.

2.2. Input data of the model comparison

The model comparison is based on a uniform input data set that
is used in all models. It defines the exogenous installed generation
capacities considered in each case as well as their techno-economic
parameters, the energy demands, and various time series. The time
series indicate the hourly course of the demand for electricity, heat and
hydrogen, the electricity generation of wind power and PV, the inflow
to reservoir hydro power plants, and the flexibility of BEV and DR. As
input data requirements differ across models, some models may not use
all technology-specific data points.
4

Fig. 1. Model regions considered in the comparison (gray) with VRE generation shares
depicted in pie charts and the total annual VRE generation in TWh in each diagram.
These shares and values apply to the test cases without additional electricity demand
due to sector coupling. Even though measured demand profiles and historical weather
years are used for the countries shown, the test cases are highly stylized. For example,
currently existing capacities of hydro power plants and thermal power plants are not
considered, and the transmission grid is only considered in one test case.

The regional scope of the test cases includes 11 regions. For parts
of the input data used, such as electricity demand or VRE generation
profiles, these regions correspond to different countries in Central
Europe (Fig. 1). However, the modeled system is not meant to be a real
representation of their energy system, as we neglect currently existing
power generation and storage capacities. Instead, we consider stylized
plant capacities for the modeled technologies. Also, the existing power
grid is only considered in the test case focused on power transmission.
Thus, these are exemplary model regions with different amounts and
temporal profiles of demand and VRE generation.

The assumed wind and PV capacities are identical across all models.
However, there are differences between the test cases, as the additional
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Table 3
Overview of programming procedures and optimization approaches of the contributing models as they are used in the comparison.

DIETER E2M2 GENESYS-2 ISAaR JMM MarS oemof REMix RESTORE

Modeling
language

GAMS GAMS C++ MATLAB,
PostgreSQL

GAMS Fortran Python GAMS MATLAB

Problem
formulationa

LP LP, MILP population-based
heuristic

LP LP, MILP MILP, DP,
Lagrange

LP LP QP

Foresight in
hours

8760 8760 1 8760 24/36 8760 8760 8760 144

Objective min. costs min. costs min. costs min. costs min. costs min. costs min. costs min. costs min. resi-
dual load

Objective
function

OPEX OPEX OPEX OPEX OPEX OPEX,
Lagrange
multipliers

OPEX OPEX residual load
balancing

Documentation [28,29] [30,31] [32,33] [34–36] [37] [38] [39–41] [42–44] [45,46]

aLP — linear programming, MILP — mixed-integer linear programming, DP — dynamic programming, QP — quadratic programming.
electricity demand of sector coupling must be accompanied by higher
VRE capacities to realize uniform supply shares. To minimize the
number of different input data sets, the electricity demands of HP,
BEV and electrolysers are assumed to be identical. The corresponding
hydrogen and heat demands were then calculated using the efficiency
of the electrolyzers and the coefficient of performance (COP) of the
HP, respectively. The heat demand to be met by CHP or flexible heat
networks is assumed to be identical to that of HP.

The VRE capacities corresponding to the two input data sets of
electricity demand are calculated in separate upstream optimization
runs with the REMix model. We make an exogenous assumption of a
theoretical VRE supply share of 80%, which could only be realized if
curtailment and losses were completely avoided. As no power grid is
considered when determining these capacities, the supply share of 80%
applies to each of the model regions. Since the regions have different
VRE potentials in terms of installed capacity and hourly electricity
generation, different optimal combinations of PV, wind onshore and
wind offshore result (Fig. 1). The techno-economic parameters are
assumed identical for all regions.

The assumed capacity of flexibility options is identical to the max-
imum residual load to be covered in the case of TPP, CHP, reservoir
hydro power, and EES. Transmission capacities are assumed to slightly
increase compared to today, as they are expected by [25] for the year
2030. We do not differentiate capacities by flow direction as this is
not possible in all models. Instead, the larger of the two values is used
in each case. For DR, potentials for load shifting and controlled load
shedding in industry and commerce are set according to [26]. In the
test cases with one of the sector coupling technologies, the capacities
of the peak load power plants are adapted to the – in these cases higher
– residual peak load.

To enable automated processing by the models, the model input
data is provided in a uniform template. This template is available
together with the used model input data at [27].

2.3. Contributing models

The models involved in the comparison are hourly resolved multi-
node power sector optimization models with representation of different
flexibility options. However, there are numerous differences in terms
of programming procedures and objective function (Table 3). While in
previous applications, the models were used to analyze systems with
different geographic scope and spatial detail, here we aim for a fully
harmonized application. Not all models are used in every test case
(Table 2). This is partly due to the scope of the respective model, but
also partly due to the scope of the project, which strives for a modeling
effort that is as uniform as possible.

As Table 3 shows, the majority of contributing models minimize to-
tal system costs, which here only include the operational costs (OPEX),
under perfect foresight. However, three models have fundamentally
5

different optimization approaches as specified in the following.
Heuristic dispatch model approach. In GENESYS-2, a dispatch model
provides a fixed technology dispatch order for every time step. A
distinction is made between two different system states: either there
is a VRE surplus (negative residual load) or there is a VRE shortfall
(positive residual load). In case of a negative residual load, the surplus
initially is balanced across regions if possible. Subsequently, short-term
EES are charged until they reach full charge capacity, then charging of
these units is possible with an additional cross-regional balancing. The
same procedure is then applied to long-term EES. Remaining surplus
is curtailed. In case of a positive residual load, there is an equivalent
procedure. The model balances the shortfall across regions if possible.
Then, it discharges storage starting with short-term storage. In a last
step, the model operates TPP to cover the remaining residual load.

Rolling horizon approach. JMM uses a rolling planning horizon to opti-
mize the yearly dispatch. The year is divided into shorter periods to
reduce the size of the optimization problem, and, therefore, the re-
sulting overall computation time. Additionally, this approach offers the
opportunity to consider information updates like in case of renewable
forecasts. In JMM, every 12 hours (h) a new optimization period starts
with a length of 24 or 36 h.

RESTORE also uses the rolling horizon approach. The optimization
period is set to 72 h, the step size to 36 h. Furthermore, an aggregated
foresight horizon enables a longer-term forecast: hours that lie after the
actual optimization period are aggregated and appended (for most of
the cases considered here: 72 h, aggregated into 6 clusters). Generally,
models with reduced foresight are limited in optimal storage use over
longer periods of time. To consider the long-term use of storage, a
filling level must be specified for the end of each optimization period. In
RESTORE this is realized through a separate, upstream module. Here,
a single year-round optimization with perfect foresight with reduced
temporal resolution is done. These results are then set as constraints
for the detailed optimization with rolling horizon, ensuring seasonal
effects are considered. Otherwise, instead of retaining the stored energy
for usage at a later point in time, a complete discharge of the stored
energy would be incentivized.

Quadratic residual load minimization approach. In contrast to all other
contributing models, RESTORE minimizes the positive residual load
and not the system cost. In doing so, the model maximizes the VRE
use and minimizes the required back-up capacity without considering
economic restrictions of flexibility options. Beyond that, it uses a
quadratic programming (QP) approach instead of a linear one to avoid
load peaks and reduce gradients.

2.4. Technology modeling differences

Beyond the optimization approaches, there are a number of differ-
ences that affect technology modeling as outlined in the following. The

overview in Table 4 focuses on the differences that are essential for
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the subsequent comparison of the results. For technologies not listed
there, no relevant differences between the participating models were
identified.

Thermal power plants. A wide range of different approaches emerges
hen considering load change constraints and costs for TPP. In the case
ithout integer variables, there are some models that do not foresee

oad change constraints and costs at all (GENESYS-2, oemof). In others,
he load change incurs additional costs that scale linearly with the
ourly load change (DIETER, E2M2, ISAaR, REMix). In JMM, these
osts only apply for started up capacities. In addition to load change
osts, further costs incur in ISAaR when power plants leave a certain
apacity range and fuel consumption is higher at partial load. Similar to
SAaR, also in E2M2 and JMM a higher fuel consumption at partial load
s well as for starting-up capacities is taken into account. In contrast to
his, in MarS load change constraints are considered, however no load
hange costs are applied. In E2M2 load change and start-up constraints
nd costs are considered only in test cases modeling base load power
lants.

In addition, in the case of a MILP formulation a minimal power feed-
n has to be maintained during operation (E2M2, JMM, MarS). Further
estrictions apply considering minimum up and down times of TPP.
oreover, E2M2 and MarS also include explicit ramping restrictions. In

MM, the power plant restrictions are not only applied for the specific
ILP test case, but are also used in a modified way for the LP test cases.

imilar as in JMM these restrictions are also considered in E2M2 with a
P formulation but only in test cases modeling base load power plants.

The unavailability of TPP can be modeled either by a continuous
ower reduction based on a given availability rate or by a stochastic
pproach. Within the stochastic approach, which is exclusively consid-
red in MarS, discrete units are randomly drawn and made unavailable
educing the overall available generation capacity. Thus, unlike the
ther models, the hourly values are not an exogenous assumption. On
verage over the entire year, the plant availability corresponds to the
onstant values.

ydro power plants. Hydro power plants are characterized by a set
f reservoirs subject to natural inflows, which are interconnected by
urbines and pumps. In most models, a simplified implementation
sing an aggregated approach is applied. Interconnected storage reser-
oirs, inflows, turbines, and pumps are combined in one common
nit. Further differences in the modeling approaches exist regarding
he consideration of pumps and natural inflows. The DIETER model
ersion used here does not consider pumping. In GENESYS-2 direct
nflows to the reservoirs cannot be implemented. In all other models
oth direct inflows as well as pumps are modeled simultaneously. In
ontrast to the aggregated models, in MarS a more detailed model of the
equential interconnection of reservoirs is implemented, considering
he water masses, which are circulated between individual reservoirs.
his structure allows that water masses that flow through multiple
eservoirs and turbines could generate electricity multiple times.

lectric energy storage. The basic representation of EES is very similar
or all participating models. The most relevant difference is the con-
ideration of minimum initial and final storage levels in some models
Table 4). These storage boundaries have not been harmonized. Apart
rom the fact that this is not possible in all models due to different
odel requirements, the aim here is to identify the differences in model

esults arise from these different model formulations.

ower transmission. The consideration of power transmission lines dif-
ers primarily in the modeling approach. While REMix uses a direct
urrent (DC) load flow approach [47], all other models employ a
implified transport model [48]. The difference is limited to the model
ormulation; REMix also does not represent a detailed network topol-
gy. Another model difference concerns the consideration of transmis-
ion losses, which are accounted for in all models except MarS and
ESTORE.
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Demand response. The main differences in the model representation
concerns the basic approach of modeling DR either as a storage technol-
ogy with additional time constraints (RESTORE), or as a load shifting
process that explicitly constrains loads shifted in specific hours (DI-
ETER, MarS and REMix). Further, the models differ with respect to
limitations of the usage frequency, maximum shifting duration, inter-
vals between load interventions, and time-variable availability of the
potential or energy losses. In the RESTORE model, DR is implemented
as a virtual energy storage with time-variable boundary conditions for
power and energy according to the methodology described in [49].
Differing from this, MarS uses a generic load shifting model. Loads
can be shifted within a defined time window, and the hourly shift
potential can be specified. In contrast, DR availability is assumed to
be time-invariant in DIETER. Here, load increases or decreases have to
be balanced within a symmetrical maximal shift duration either prior to
or after an intervention. Furthermore, DIETER includes a regeneration
time for each shifted energy unit, which has to elapse before the next
load shift [50]. In contrast to the other models, REMix uses fixed shift
durations [51]. This implies that when the load changes, it is already
determined when the compensation takes place. To limit the size of the
model, not all possible values up to the maximum shift duration are
usually considered. Furthermore, intervention durations, frequencies
and regeneration times between interventions are limited by approx-
imated energy quantities of the load shift, which are calculated from
mean values of the potentials. Temporal load shifting is considered in
all models that contribute to the DR test case, controlled load shedding
only in DIETER and REMix. Losses are considered in all models except
MarS. DR costs are incurred in all models except RESTORE.

Battery electric vehicles. For the sake of comparison, BEV are repre-
sented as one ’swarm’ aggregate of vehicle load and storage in all
contributing models. The implementation largely coincides, with subtle
differences regarding technical and economic restrictions. BEV entail a
flexible charging of the vehicle’s batteries (BEV-CC), and an additional
flexible generator that reconverts the battery’s energy back into the
electricity grid (BEV-V2G). BEV that are not being connected to the
grid are assumed to be driving on the road. For most models, the time-
variant driving profile induces a variable electricity demand supplied
by the batteries. In contrast, the JMM model assumes that, before
disconnecting, individual BEV batteries are fully charged and, after
driving, vehicles return to the grid with a pre-defined storage level.
All models restrict the battery capacity by time-variant minimum and
maximum load levels, aggregated over the sum of BEV. The maximum
level is defined by the number of vehicles that are connected to the
grid and their specific battery capacity. In case of JMM and RESTORE
models, the swarm battery does not need to retain a minimum level
as safety margin, but can be fully discharged. Further differences are
attributed to the costs of (dis)charging. The REMix model penalizes
deviations from an exogenous profile, which refers to uncontrolled
charging. All other contributing models do not impose such penalties.
Variable costs for charging and/or discharging energy apply in DIETER,
JMM, and oemof. REMix also considers discharging costs.

Combined heat and power. As with TPP, the modeling of CHP plants
differs in the degrees of constraints and costs of ramping as well as the
unit availability. A complementary feature is that some models (ISAaR,
oemof) offer the possibility of excess CHP electricity generation, which
results in increased flexibility. Furthermore, in one model (MarS),
the interaction on the heat side is not explicitly modeled. Instead, it
is translated into must-run electric generation, resulting in increased
flexibility compared to explicit modeling.

Electric heat pumps. Some of the models (DIETER, oemof, REMix)
include a temperature-dependent COP, using ambient temperature time
series, whereas others (ISAaR, JMM) assume a constant COP through-
out the year. In DIETER and JMM, all heat produced has to go through
the attached TES. In contrast, ISAaR, oemof and REMix feature a
bypass. The availability of a storage bypass is also relevant in the test
case considering hydrogen electrolysis (Table 4).
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Table 4
Overview of technology modeling differences and features relevant for the result comparison.

Technology DIETER E2M2 GENESYS-2 ISAaR JMM MarS oemof REMix RESTORE

Power plant
ramping
(where
applicable
including CHP)

simple load
change costs

operational
restrictions, part
load efficiencies

no flexibility
constraints or
costs

simple load
change costs,
linearized part
load behavior

operational
restrictions, part
load efficiencies

efficiency
depending on
operation point

no flexibility
constraints or
costs

simple load
change costs

power plants
not explicitly
modeled

Power plant
unavailability

constant constant constant constant constant stochastic
model of outages

constant constant

Reservoir hydro
power

aggregated,
w/ inflow, w/o
pumping

aggregated,
w/ pumping and
inflow

aggregated,
w/o inflow, w/
pumping

aggregated,
w/ pumping and
inflow

aggregated,
w/ pumping and
inflow,
generation based
on internal
water value
calculation

Hydraulic
networks
consisting of
interconnected
reservoirs,
turbines and
pumps

aggregated,
w/ pumping and
inflow

aggregated,
w/ pumping and
inflow, [52]

aggregated,
w/ inflow, w/o
pumping

Start and end
storage levels

start: 50%,
end: 50%

optimized,
equal

start: 0%,
end: optimized

start: 0%,
end: optimized

start: 50%,
end: optimized

start: 50%,
end: 50%

optimized,
equal

optimized,
equal

start: 0%,
end: optimized

Demand response maximum
shifting times,
regeneration
time,
time-invariant
shifting
potentials [50]

defined shifting
time frames, in
which the
energy has to be
compensated. No
limits in
frequency.

time-variant
potential, fixed
shifting and
intervention
times, limits in
frequency [51]

implemented as
storage with
time-variable
boundaries [49]

Heat pumps temperature-
dependent COP
[53]

constant COP constant COP temperature-
dependent COP

temperature-
dependent COP

temperature-
dependent COP

Storage bypass
(thermal and/or
hydrogen)

w/o bypass w/ bypass w/ bypass
(CHP),
w/o bypass (HP)

w/ bypass w/ bypass
[26]

w/o bypass,
thermal storage
implicitly
modeled as
thermal load
shiftability

Power
transmission

NTC-based
w/ losses

NTC-based
w/ losses

NTC-based
w/ losses

NTC-based
w/ losses

NTC-based
w/ losses

NTC-based
w/o losses

NTC-based
w/ losses

DC load flow
w/ losses

NTC-based
w/o losses

Battery electric
vehicles

with minimum
battery level, CC
and V2G costs
scale with total
charged or
discharged
energy

w/o minimum
battery level,
vehicle must be
fully charged
before
disconnecting, no
CC but V2G

with minimum
battery level, no
CC and V2G
costs

with minimum
battery level, no
CC but V2G
costs

with minimum
battery level, CC
cost scale with
deviations from
exogenous
charging profile

without
minimum
battery level, no
costs for CC and
V2G
costs
2.5. Output indicators

The evaluation of the model comparison focuses on the use of the
available flexibility options. In a broader sense, this also includes cur-
tailment of VRE generation and uncontrolled load shedding. The latter
is implemented in the models as a slack variable to ensure the balance
of power, heat, and hydrogen to keep the mathematical problem solv-
able. These two indicators are complemented by the system costs and
flexibility usage. Depending on the flexibility option, this is represented
by electricity, heat or hydrogen generation, storage utilization, storage
and grid losses, load shifting, and transmitted electricity.

Besides scalar indicators, we analyze hourly use profiles of plant
operation. In particular, the use of flexibility options, but also of VRE
curtailment and uncontrolled load shedding (corresponding to uncov-
ered load), is compared for selected times of the year. This allows the
observation of deviating plant usage behavior.

To enable an automated evaluation of the results, the output vari-
ables of all models are transferred into a standardized data format,
which is then read by the evaluation scripts.

We use a cluster analysis tool to identify systematic result devia-
tions. The tool applies a hierarchical cluster algorithm (Unweighted
Pair-Group Method using Centroids (UPGMC)), which allocates model
results on region and indicator level to clusters based on the similarity
of results. The latter is determined by a pair-wise distance matrix indi-
cating the Euclidean distance between all result values. First, the pair of
most similar models, i.e., those with lowest Euclidean distance between
their result values, are joined together to one cluster. Subsequently, the
UPGMC algorithm updates the distance matrix, including the distance
between the newly formed cluster and all other result values using the
cluster centroid. This is the arithmetic mean of all results grouped in
one cluster. In the next cluster step, again the most similar pair of result
values or clusters are joined together, with a subsequent update of the
distance matrix. Again, the procedure repeats and terminates at a pre-
determined distance threshold. The resulting cluster structure of models
supports the identification of structural consistencies of models grouped
together in one cluster, and differences between models grouped in
7

different clusters. Models in singleton clusters with only one cluster
member are considered outliers, indicating either erroneous model
parameterization that can be improved, or structural discrepancy to all
other models.

3. Results and discussion

The analysis of the four key indicators, curtailment, uncovered load,
system costs, and flexibility usage, shows that the range of results
varies greatly depending on the test case. This implies that the iden-
tified model differences (Tables 3 and 4) have very diverse impacts,
depending on the flexibility option considered.

The absolute values of the indicators are closely linked to the
characteristics of the flexibility option examined. Thus, large amounts
of uncovered load occur primarily when technologies cannot provide
controllable electricity or can do so only to a limited extent (DR,
PowGrid, EES). In turn, high VRE curtailment occurs when other con-
straints limit the flexibility of electricity supply (CHP(BP), CHP(Ex)).
Both uncovered load and VRE curtailment are also reflected in the
flexibility usage. In addition, uncovered load is a very strong driver
of system costs. Not only in absolute terms, but also in the observed
ranges of differences in results, there are corresponding dependencies
between the indicators.

Depending on the possibility and extent of a provision of positive
and/or negative balancing energy, the considered flexibility options
have different effects on the system. From this follows that the val-
ues of flexibility usage shown in Fig. 2(d) are not always directly
comparable. This applies in particular to cases in which several inter-
related flexibility options are available to the system (FlexHeatNetw,
BEV(V2G)).

We analyze the differences in hourly plant deployment for selected
test cases by calculating the correlation of the hourly values between
the model pairs and averaging them over all time steps of the year
(Fig. 3). Particularly high correlations are found for the dispatch of
peak load power plants, charging of BEV, and operation of HP, whereas
the spread of model results is much larger for long-term storage, BEV
grid feed-in, and DR. With regard to long-term storage, however, it
should be noted that the differences result primarily from a constant
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Fig. 2. Overview of the model results for the temporarily and spatially aggregated main indicators. The colored symbols show the individual model results, normalized with the
maximum value (left axis). The lines indicate the range of absolute values (right axis). The subfigures illustrate annual VRE curtailment (a), annual sum of uncontrolled load
shedding (b), total system costs (c), and flexibility usage (d). The latter represents the power production of power plants for the test cases TPP, ResHydro, CHP, HP+TES, H2+Stor;
storage output for test cases EES, and FlexHeatNetw; power transmission for PowGrid; load shifting/controlled load shedding for DR, and BEV(CC); and grid feed-in for the test
case BEV(V2G). Uncontrolled load shedding corresponds to an uncovered load and includes electricity, heat and hydrogen, depending on the test case. Table 2 details the test
cases.
offset, since the annual sum of electricity supply shows a high agree-
ment in most models (Fig. 2(d)). The opposite effect is particularly
evident in the case of the HP, where a significantly different operating
behavior occurs despite relatively small differences in the annual sums.
Fig. 4 gives an example of the differences in the hourly operation of
selected flexibility options.

Results on the flexibility usage suggest a clustering of our 18 test
cases into three categories. In the cases analyzing TPP, CHP (both with
and without peak boiler) and hydrogen electrolysis (H2+Stor), there
are only minor differences in the range of a few percent or TWh across
the models, mostly caused by individual model features. This usually
involves the use of a few additional constraints or model parameters
8

while maintaining the same basic approach to technology modeling.
Substantial deviations can be observed in the test cases with EES,
power transmission (PowGrid), building HP, and the flexible heating
network (FlexHeatNetw). They predominantly result from the different
optimization approaches. Results diverge to the largest extent in the
test cases focusing on DR, BEV, and reservoir hydro power (ResHydro).
They are driven by fundamentally different approaches of technology
modeling.

We elaborate on the results following the above-mentioned catego-
rization logic (driven by differences in technology modeling, optimiza-
tion approaches and model features). Additionally, we associate result
deviations to the model differences identified in Section 2.
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Fig. 3. Correlation of model time series for selected test cases and parameters, where the scatter points for each model represent the correlation to the other model’s plant
operation over 8760 time steps.
3.1. Impact of different technology modeling approaches

Power transmission. When using a DC load flow approach (REMix),
not all lines can be utilized simultaneously according to their nominal
capacity. Thus, balancing of positive and negative peaks of the residual
load requires more line capacity compared to the simplified transport
model (all other models). As a result, the amount of electricity trans-
mitted decreases by about 10% in the corresponding test case, with the
VRE curtailment increasing by approximately the same value (Fig. 2).
Furthermore, the uncovered load and, thus, system costs increase by
about 3%. In order to separate the interaction of the different network
representations with model differences in other technologies, power
transport between regions is not possible in all other test cases.

Demand response. As a consequence of the different modeling ap-
proaches (Section 2.4), there are strong deviations in the annual energy
quantities of load shifting and controlled shedding (Fig. 2(d)), but also
in the hourly operations (Fig. 3 and Fig. 4(e)). In the absence of any
other flexibility option, DR costs should not drive results. Thus, differ-
ences in usage result from modeling. Considering fixed shift durations,
maximum usage durations, and/or frequency constraints results in a
3–4 times lower and more time-variable usage (DIETER, REMix). In
contrast, modeling DR as a time-constrained storage technology allows
for usage durations of multiple hours and increased shifted energy
amounts (RESTORE). Not considering regeneration periods and daily
maxima increases the frequency of DR use by up to a factor of 10
(MarS). Greater amounts of shifted load cause a stronger reduction
of VRE curtailment and uncovered load (Fig. 2). Another finding is
that, in the case of a DR potential that varies strongly over time, a
consideration of daily energy quantity maxima on the basis of average
values substantially reduces load shifting (REMix) compared to the
other models. Consideration of losses, on the other hand, is not essential
for the results at the values examined.

Battery electric vehicles. Higher flexibility, i.e. fewer limitations in
terms of economic or technical restrictions, promotes BEV charging
behavior that is beneficial to VRE power generation. The different
constraints on minimum storage levels and cost assumptions for CC and
V2G (Section 2.4) lead to a widely differing flexibility usage (Fig. 2).
Imposing costs on the deviation from an exogenously specified charging
profile (REMix) results in a different behavior especially in times of low
VRE availability (Fig. 4(c) and (d)), as compared to approaches that do
not incentivize a certain charging profile (all other models). In contrast,
usage of V2G is mostly driven by differences in the optimization
approaches (Section 3.2).
9

Reservoir hydro power. The consideration of a detailed cascading model
(MarS) enables a higher electricity generation by hydro turbines since
the water masses can be used several times for power generation when
flowing through multiple reservoirs and turbines. This lead to a 10%
increased generation in MarS compared to models with the aggregated
approach (E2M2, JMM, oemof, REMix). Therefore, uncovered load and
pumping can be completely avoided within the cascading model, which
is not the case for models applying the aggregated approach (Fig. 2).
These differences in the results are explicitly based on the actual
implementation, since both approaches are characterized by the same
overall storage and conversion capacity. The strong upward outliers in
VRE curtailment, uncovered load, and system costs (Fig. 2) results from
the disregard of pumping (DIETER).

3.2. Impact of different optimization approaches

The usage of a fixed order of dispatch without temporal foresight
(GENESYS-2) leads to substantially different results only in the test
cases with EES. Part of the explanation is that the usage of storage
technologies not only depends on the maximum available power output
but also on the storage level. The storage level is in turn influenced by
the charging and discharging strategy and short planning horizon. This
strategy is markedly different and less efficient compared to models us-
ing perfect foresight. It drives an increase in curtailment and uncovered
load, reflected also in the operational behavior of EES. The maximum
deviation can be observed for long-term storage with the curtailment
rising about 50% compared to LP models.

Perfect foresight over a whole year should, in principle, allow for
a more efficient operation of the optimized system than models with
rolling planning horizon (JMM, RESTORE) — provided that restric-
tions of the modeled technologies extend over several, individually
optimized time steps. For a duration of the individual optimization
steps of 72 h plus 72 h aggregated foresight (RESTORE), this here
only applies to long-term storage, whose deployment is optimized in a
separate modular procedure (Section 2.3), which strongly reduces the
impact of the rolling planning approach.

The shorter time horizon of 24 to 36 h (JMM) is not considered in
the test case with long-term storage, but in those evaluating battery
storage, TES, and BEVs. However, remuneration of the storage filling
level at the end of every optimization period in the objective function
yields similar results in comparison to models with perfect foresight.
This is related to the fact that, in the simplified test cases, VRE surplus
can either be stored or curtailed. In more complex systems, other flexi-
bility options or power plants with detailed operating restrictions offer
additional applications for excess electricity and, therefore, probably
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Fig. 4. Time series of selected indicators using the example of a spring period and the model region representing Germany. Shown are the operation of base load TPP (a),
the filling of long-term EES (b), charging (c) and grid feed-in (d) of BEVs, load reduction for one of the DR technologies (e), and building HP operation (f). The differences in
technology dispatch during the four days shown result from the VRE power generation. While the first two days are relatively windless, the following days are characterized by
surplus situations at midday due to a higher wind power feed-in. This results in a different flexibility requirement, which leads to a higher or lower effect of the model differences
depending on the technology considered.
more substantial model result differences. Only in the test case BEV
(V2G), reduced curtailment can be observed in JMM, which is expected
to be mainly caused by different modeling restrictions for BEV and not
by the rolling planning horizon.

The application of quadratic objective function substantially affects
the technology dispatch by smoothing out peak loads with priority.
We observe an additional usage of storage, power transmission, BEV
flexibility, and DR in the corresponding test cases. This is accompanied
in most cases by relatively high VRE curtailment, and in the case of
long-term EES also by larger amounts of unsupplied energy. As a result,
there are also differences in the timing of V2G use (Fig. 4).
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3.3. Impact of model features

Besides the more fundamental differences in optimization and tech-
nology modeling approaches, a variety of smaller model features have
an impact on the results.

Grid losses. Neglecting losses in power transmission leads to a reduc-
tion of VRE curtailment and uncovered load, which however has only
minor effects on the system costs in the test case considered here.

Initial and end storage levels. Depending on their implementation (Ta-
ble 4), initial and end storage levels may have a pronounced impact on
the results for long-term EES. Usually, long-term storage filling levels
follow a seasonal pattern, driven by the availability of the dominating
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Fig. 5. Comparison of the range of model results for the indicator of VRE curtailment
for the two model regions Austria and Switzerland. In Austria, 65% of the VRE
power generation originate from wind onshore and 35% from PV, while the shares
for Switzerland are almost the opposite (38% and 62%). The annual demand to be
covered is about 15% higher in Austria (Fig. 1).

energy source. Fig. 4 shows the impact of different initial and end
storage levels for long-term storage. The definition of initial storage
levels (RESTORE, GENESYS-2, MarS) leads to a divergent mode of
operation. Allowing a lower storage level at the end of the year than at
the beginning can also have an impact on storage operation: This can
be observed, for example, in the test case BEV (CC), where JMM uses
part of the energy initially present in the storage to reduce electricity
production.

Power plant outages. The consideration of stochastic outages (MarS)
causes larger amounts of uncovered load if they coincide with a high
residual peak load. This is relevant for the test cases of TPP and CHP
and all others in which peak load power plants are taken into account
(Fig. 2). In the case of CHP, however, this is partially superimposed by
the disregard of a CHP power curtailment, and in the case of base load
TPP by the constraints and costs of power plant ramping.

Constraints and costs of power plant ramping. Despite the numerous
differences in the approaches to modeling constraints and costs of TPP
ramping, the spread of results is relatively small. This is due to the
limited number of degrees of freedom for the optimization if only
one flexibility option is available. The modeling differences are most
noticeable in the case of base load TPP, which are characterized by
a low technical flexibility (Fig. 4). Additional constraints and costs of
ramping can reduce the amount of electricity provided by up to 5%,
resulting in an increase of curtailment, uncovered load and system costs
(Fig. 2). Gas-fired power plants are also considered in the test cases of
HP, BEV and electrolyzers. Since there are few other model differences,
at least in the case of HP and electrolyzers, the consideration of TPP
ramping is a relevant driver of the differences in results there.

In the test cases analyzing CHP, ramping constraints and costs
also cause a deviating operational behavior. However, the amounts
of electricity provided are almost identical. In the test case with a
flexible heating network, the CHP ramping has a substantial impact on
the interaction of CHP, HP, and TES. Strong temporal changes in the
residual load are preferably compensated by adjusting the HP input
in case of additional CHP ramping restrictions, which favors a more
intense usage of the TES (ISAaR).
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Combined heat and power. The possibility of excess CHP electricity
(ISAaR, oemof) allows for the provision of additional heat in cases
where there are no other heat generators. This is reflected in substan-
tially lower values for uncovered load, here for heat, in the CHP(BP)
and CHP (Ex) test cases (Fig. 2). However, since the case of an isolated
CHP plant is very contrived, this should not affect more realistic model
applications, as the test cases with alternative heat sources show.
Furthermore, increased CHP plant ramping costs result in very slightly
lower CHP usage in cases with peak boiler (ISAaR).

Time-variant COP. Models that represent air-to-water building HP with a
temperature-dependent and time-variant COP (DIETER, oemof, REMix)
have about 8% higher electricity consumption than those using a
yearly-averaged scalar value for COP. This is due to the fact that time-
variant COP are lower in winter due to colder ambient temperature,
which is the time of the year with the highest heating demand. The
modeling of a time-variable COP is therefore of high relevance to avoid
an underestimation of the generation capacity required in cold winter
hours. The hourly operation pattern shows a clear concentration of HP
operation to the hours with a higher COP especially on winter days,
increasing the use of the TES (Fig. 4).

Storage bypass. As expected, disallowing the option of a bypass for
thermal or hydrogen storage leads to considerably higher values for
charging and discharging. Besides a difference in reporting, this can
have an impact on the results when variable operational costs or
charge/discharge losses apply.

3.4. Interaction of model features and data

When analyzing the results, systematic effects of the interaction be-
tween the input data or the selected test case and the model differences
become apparent. In general, the observed differences in the results
are clearly driven by the chosen design of the simplified test cases
and its limited technology portfolio. Thus, while the simplified design
allows for a fairly good association of model and result differences, it
also has a limiting effect on the possibility of generalizing the results.
For example, the differences between linear minimization of costs and
quadratic minimization of residual load turn out to be quite small
when only one flexibility option is available. Similarly, the impact of a
fixed dispatch order and a rolling horizon approach is rather limited in
our test cases with few degrees of freedom. Without considering the
interaction of different flexibility options, there is a fairly intensive
use of the available technology in each case. Thus, the quantitative
differences in results can only be transferred to more comprehensive
scenarios to a limited extent.

Furthermore, the restriction to one flexibility option can lead to
non-unique optima due to situations where multiple options with the
same cost or residual load level are available. In our test cases this
applies, in particular, to the question in which hour and for which
technology VRE curtailment occurs during a period of consecutive
hours with renewable surplus. While this does not affect the annual
totals of flexibility deployment and other indicators, it may result in
different hourly patterns. Identifying this effect in a reliable way proved
to be non-trivial in the analysis. It may be avoided by considering
random noise costs of VRE curtailment.

Complementary to these overarching effects, some model differ-
ences may affect some model region stronger than others. For instance,
this concerns the effect of stochastic power plant outages. It is found
to be most effective in regions with smaller total installed generation
capacities, where the failure of individual units has a relatively larger
impact. While there are large relative differences in the uncovered load,
absolute figures are very small (Fig. 2). Furthermore, there are sys-
tematic dependencies between the VRE supply structure and the range
of model results for curtailment (Fig. 5). The relative deviations be-
tween the models tend to be larger when technologies are particularly
suitable for balancing the respective dominant VRE technology. This
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presumably results from the fact that the model differences become
more pronounced with a more frequent technology deployment. In the
case of wind-dominated supply, the results in the test cases with long-
term EES, reservoir hydro power, base load TPP, hydrogen electrolysis,
CHP with boiler, controlled BEV charging, and HP spread more widely.
In the case of power generation predominantly from PV, on the other
hand, greater dispersion is observed for short-term EES and V2G. No
clear trend is observed for CHP without boiler and power transmission.
These observations result from comparing several pairs of countries
with comparable absolute demand, each with contrasting and clearly
pronounced dominance of one VRE technology (Fig. 6). In contrast,
a comparison of the ranges of results for VRE curtailment for model
regions with similar supply structures but widely varying amounts of
demand reveals no systematic trends.

3.5. Recommendations for future model comparisons

Based on the experience of previous model comparisons [23], a
relatively large amount of time was invested in a theoretical compari-
son of the models in preparation for the modeling work. Thereby, the
required input data of each model was gathered and model overviews
were generated. These helped to understand the different models and
facilitated the analysis.

In addition, the exact design of the data interfaces and the naming of
the parameters under consideration is important to establish a common
understanding. This includes input as well as output parameters. Prior
standardization can reduce the need for repetitive model runs caused
by different interpretations of model input parameters or errors in the
transfer from the input database. Especially the usage of harmonized
data formats has proven to be beneficial.

To ensure the plausibility of the considered test cases, it is advisable
to first test them in one model before rolling them out to all models.
Furthermore, the extensive automation of model parameterization and
evaluation via automated interfaces and scripts for data processing
proved to be very helpful in making the large number of models and
repeated calculations manageable.

It was also useful to develop a routine that automatically gathered
all relevant results, and created standardized figures. In addition, it
was beneficial that the analysis could be performed in a decentralized
way by all participants. In this context, it seems advisable to include
central model input variables, such as installed plant capacities, in the
evaluation. In doing so, parameterization errors can be identified more
quickly.

For the comparison of results, a combined analysis of annual aggre-
gated results as well the time series is advantageous allowing investiga-
tions of differences in the operation of technologies. To quickly identify
similarities in results, a cluster analysis is useful. However, for some
technologies, such as BEV, the analysis of differences in results over
time also proved to be difficult due to systemic interactions of various
model differences.

4. Conclusions

To quantify the understanding of the effect of fundamental but
also small-scale modeling decisions on the results of temporally and
spatially resolved power system models, our work was dedicated to
the detailed analysis of nine models and their application in fully har-
monized but highly stylized test cases. In doing so, a significant effort
had to be made for the complete harmonization of the models. This
harmonization has contributed significantly to the mutual validation
of the models.

The initial comparison of the general model characteristics showed
that each of them is characterized by certain properties regarding
optimization approach and technology modeling. However, a detailed
comparison revealed that many of the models do not differ from each
other in the way individual technologies are modeled. Pronounced
12
differences in technology modeling were identified primarily for DR,
BEV, reservoir hydro power, and power transmission. In model analyses
where these technologies are a relevant factor, it is therefore important
to be aware of potential effects of the chosen modeling approach. More
specifically, the comparison of DR modeling suggests that the use of
explicit shift durations and usage constraints is particularly important
when considering real-world processes. Simplified approaches are well
suited for evaluating the potential of aggregate load flexibility. When
modeling the flexibility of BEV, the consideration of costs of controlled
charging as well as vehicle-to-grid proves to be particularly relevant.
This should be considered accordingly in analyses with a focus on
electric mobility. Furthermore, a detailed consideration of the cascades
of storage hydro power plants is recommended when a dedicated
analysis of individual plants or systems is the focus. In contrast, the
aggregated approach is sufficient for an approximate assessment of the
role of hydro power in integrated future energy systems. Because it
considers the interaction of power flow across all lines connected to
a node, the DC load flow approach is more suited when the focus is
on analyzing the use of existing grid connections, especially in the
evaluation of critical supply situations. In contrast, the transport model
approach, which overestimates real flows, is sufficient for aggregated
system planning.

In addition to these more pronounced differences in technology
modeling, a wide range of minor differences in model features was
identified in the analysis, such as the consideration of grid losses
or a temperature dependent COP of HP. However, these have only
a limited impact on model outcomes. It can be concluded that the
model features often capture complementary constraints or effects of
technology dispatch, and thus allow for a more detailed analysis. They
should be considered in focused analyses of individual technologies.

With respect to technology modeling, our analysis indicates that a
detailed representation is most important when a flexibility option is
particularly suitable for balancing the usual generation characteristics
of the VRE technology prevalent in the system under consideration.

The comparison with previous model comparisons reveals that the
use of fully harmonized input data as well as the consideration of
reduced test cases allows for a dedicated analysis of specific model
differences. However, it also becomes apparent that, despite the very
simplified test cases, some technologies have multiple and, in some
cases, interlinked degrees of freedom. Overlapping effects are a major
challenge for interpreting model results and cannot always be sepa-
rated and quantified. This especially holds true for the interpretation
of hourly profiles of plant operation characterized by the interaction
of several model differences. Nonetheless, our analysis indicates that
when comparing results of temporally resolved models, not only ag-
gregated annual values but also time series have to be considered.
For example, despite similar annual aggregates of technology use,
completely different usage patterns can occur, but the opposite can also
be observed. Additionally, it must be examined individually whether a
deviating operation can also result from non-unique solutions, or such
solutions are to be prevented by suitable methods.

With regard to the fundamentally different modeling approaches
(QP, fixed dispatch order, rolling horizon), our approach proves to be
of limited suitability for model comparison. Since only few degrees
of freedom are available to the models in the simplified test cases,
these approaches yield only minor deviations in the results. Rather,
the test cases do not allow the models to manifest their respective
strengths. This is for quadratic optimization the analysis of a maximum
residual load smoothing, for the fixed dispatch order the possibility of
an integral analysis of hourly resolved transformation pathways and for
the rolling horizon the consideration of a limited temporal foresight
corresponding to reality. Using simplified test cases may therefore
not be suitable to determine the effects of the differences of these
approaches, since these might rather appear in more complex settings.

In complementary future work, it would be desirable to investigate

to what extent the identified relationships between model properties



Renewable and Sustainable Energy Reviews 158 (2022) 111995H.C. Gils et al.
and differences in results can be transferred to more complex scenarios.
This includes the further exploration of overlapping effects. Finally,
an extension to scenarios with endogenous capacity expansion could
provide complementary insights.
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