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PV, wind power, and batteries in a hybrid island system detailed simulations are necessary. These simulations 
require basic input data such as load profiles and resource data (cf. Fig. 1). 

Even though some islands are developed as pilot projects for RE island supply (e.g. El Hierro, Réunion) [8], [9], 
there is still a lack of knowledge about location, population, load, and energy supply systems on a global scale. Due 
to this research gap the global potential for RE storage systems on small islands remains unclear. This research work 
targets to identify and analyze the small islands with the help of geographic information system (GIS) tools and to 
assess the global RE and storage potential by simulations for each identified island. 

2. Methodology 

An island is defined as “a naturally formed area of land, surrounded by water, which is above water at high tide” 
according to United Nations (2012) [10]. Following this definition, all islands larger than 5 m² are extracted from 
the continental landmasses on a worldwide scale. After identifying the islands’ size and location, the local GDP and 
population is derived from Ghosh et al (2010) [11]. Due to the high resolution of these data (approx. 1 km² pixel 
size) islands are buffered with a 700 m radius to account for geographical inaccuracies due to the inequalities in 
resolution regarding the mostly high populated coastal areas of the islands [12]. 

Afterwards, the techno-economic optimization of the each island’s energy system is performed by an inhouse-
developed simulation tool*. The model simulates a one-node island energy system with hourly time steps for one 
reference year taking PV, wind power, diesel gensets and batteries into account (cf. Fig. 1). The output of the 
optimization is the lowest levelized cost of electricity (LCOE) [13] (cf. Eq. 1 and 2) and the corresponding optimal 
system configuration.  

 

consumedEl

FuelfuelCostsOpexNWACCCRFCapex
LCOE

*),(*
   (1) 

Equation 1: Levelized cost of electricity (LCOE) for power systems. Abbreviations stand for: Capital expenditures (Capex); capital 
recovery factor (CRF); weighted average cost of capital (WACC); project lifetime (N); operation and maintenance expenditures per year 
(Opex); cost of diesel per liter (Costsfuel); consumed diesel per year (Fuel), consumed electricity per year (Elconsumed) 

 

1)1(
)1(*),( N

N

WACC
WACCWACCNWACCCRF      (2) 

Equation 2: Capital recovery factor (CRF). CRF is set according to weighted average cost of capital (WACC) and project lifetime (N). 

 
Local input parameters are diesel costs, solar and wind resources, and load profiles. Each island’s energy 

consumption is derived from the mother country’s energy consumption level and energy intensity combined with the 
local GDP. The shape of the load profile is influenced by climate conditions and a tourism factor [14]. For all islands 
the same set of techno-economic parameters is chosen.  Since the exact diesel power plant composition is not known 
for each island a generic genset was modeled with some important generalized characteristics. All islands only have 
a single genset of arbitrary size running at an average efficiency that is independent from the load and only depends 
on the system size (25 % for < 3MW; 30 % for 3 MW < > 20 MW, and 35% for > 20 MW of peak load). The 
generic genset can switch from 0 to 100% within one time step, i.e. one hour. The maintenance costs do not depend 
on operating hours. These simplifications are necessary for this global approach to limit computation time to an 
acceptable level. It is important to note that the full benefit of batteries (e.g. reducing the genset’s maintenance cost 
and increasing its average efficiency) is not included. As a consequence of the assumptions concerning the genset 
and the interaction with the batteries we assume to be rather conservative in our simulated results, thus in reality RE 

 

 
* MATLAB. ® Version R2011b. The MathWorks, Inc. 
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power reveals huge differences. While in the Indian Oceanthe PV capacity is marginally higher than the wind power 
capacity, wind power exceeds PV by more than five times in the Atlantic region. This is a direct consequence of the 
different local renewable resources. The Pacific region holds by far the highest PV potential and together with the 
Atlantic region the highest wind power potential in total capacity for small islands. 

In Scenario 2 the introduction of batteries leads to an additional decrease of 6 % of the LCOE on average. An 
overall energy storage capacity potential of 5,300 MWh is calculated increasing the averaged RE share from 46 % to 
71 %. Especially in very sunny regions with many small islands such as in the Indian Ocean and Pacific region, the 
batteries reduce the LCOE and increase the RE share the most. Figure 3 illustrates this phenomenon showing that 
the prevailing energy storage potential is located in tropical and sub-tropical regions with high solar irradiation and 
relatively low wind speeds. This has already been assumed in a previous study for IRES 2012 [18] and now proven 
by this global study. Battery energy storage correlates best with PV by shifting solar power from midday to the 
demand peaks in the evening hours. This can increase the renewable energy share from around 40 – 50 % to 60 % - 
70 % (cf. Pacific and Indian Ocean). The combination of wind power and battery storage is less favorable, reflected 
in the decrease of economic wind power potential in the techno-economic optimized case by the introduction of 
batteries. This is due to the higher variability of wind power generation with sometimes weeks without produced 
wind energy. Battery capacities have to be quite high to overcome these periods of low wind speeds, which is 
usually uneconomical. In these cases, if seasonal storage is necessary, power-to-gas systems can be an economically 
extension to battery storage to store wind power over long-time periods [19]. However power-to-gas systems are not 
considered in the simulation model of this study as small islands mainly lacking substantial infrastructure for these 
systems such as gas storage facilities and power plants. 

 
Table 2: Results for techno-economic optimization of hybrid island energy supply systems (1,000 to 100,000 inhabitants) – Scenario I is without 
battery storage, Scenario II is with battery storage, results for Scenario II are in relation to Scenario I in percent. 
Regions: Atlantic and Arctic Ocean, Caribbean plus Gulf of Mexico and Bahamas, Indian Ocean, Mediterranean Sea, Pacific Ocean. 

 
Region Scenario PV (sum) 

[MWp] 
Wind (sum) 
[MW] 

Storage (sum) 
[MWh] 

LCOE (av.) 
[EURct/kWh] 

RE share 
(av.)

Atl. + Arct. Oc. Scen I 930 5,320 n/a 26.3 48%

Scen II +21% -1% 930 -1.9% 58%

Caribbean + Scen I 910 1,210 n/a 24.3 57%

Scen II +9% -2% 360 -1.6% 65%

Indian Ocean Scen I 420 370 n/a 29.7 44%

Scen II +76% -30% 1,240 -6.7% 65%

Mediterr. Sea Scen I 550 770 n/a 25.8 47%

Scen II +10% -1% 230 -1.2% 55%

Pacific Ocean Scen I 3,390 5,090 n/a 30.2 44%

Scen II +19% -5% 2,550 -7.0% 71%

Total Scen I 6,200 12,760 n/a 30.2 46%

Scen II +21% -4% 5,310 -5.6% 71%
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