
Estimating costs of extending electricity distribution networks in
Germany

Master’s thesis

for obtaining the degree of

Master of Science (M.Sc.)

in Economics

at the School of Business and Economics

of Humboldt-Universität zu Berlin

submitted by

Manuel Linsenmeier

Student No. 574577

Examiner: Prof. Dr. Franz Hubert

Berlin, 27.11.2017



Abstract

The German power system is undergoing a fundamental transformation substituting

electricity generated from fossil fuels with electricity generated from renewable

resources. This transformation - the Energiewende - incurs substantial costs for

extending and reinforcing electricity distribution networks in Germany. These costs

have been estimated to be up to 40 billion EUR by the year 2030 (dena, 2012) but

are relatively uncertain because no complete dataset of distribution networks exists.

Previous studies thus relied on small samples of real networks and employed cluster

methods to estimate the total costs of network expansion for Germany. However,

this methodology has so far not been examined. In this thesis, a dataset of synthetic

networks is used to examine different cluster models and cluster estimation methods.

These models and methods include the methodology used by previous studies. In

addition, alternative models and methods are proposed and examined. To this aim, first

a theoretical framework is developed to identify and categorise 14 network attributes

that are expected to determine the costs of network expansion. Each of these attributes

is then examined regarding its effect on the performance of a cluster model if it is

included in that model. Furthermore, the cluster models that result in the lowest

within-cluster dispersion of costs are analysed. Based on these results, 57 cluster

models are selected and assessed both in terms of the within-cluster dispersion of costs

and the relative deviation of estimated total costs from calculated total costs. Finally,

two cluster models are analysed in more detail including the geographic occurrence

of clusters. Throughout the analysis, K-Mean and regression trees are used as two

alternative cluster estimation methods. Furthermore, the number of clusters K is

varied from 5 to 300. For the costs of network expansion, a worst-case scenario and a

scenario with curtailment are constructed. Overall, the cluster model used in previous

studies performs better than most of the proposed alternative models. The results show,

however, that for all values of K at least one of the alternative cluster models performs

better. Furthermore, regression trees as cluster estimation method generally result in

clusters with lower within-cluster dispersion of costs and lower relative deviation of

total costs than K-Mean estimation, which was used in previous studies.
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Zusammenfassung

Im Rahmen der Energiewende in Deutschland wird die Elektrizitätsversorgung

auf Erneuerbare Energien umgestellt. Damit sind substanzielle Kosten für den

Netzausbau auf Verteilnetzebene verbunden. Diese Kosten wurden auf bis zu 40

Milliarden Euro bis zum Jahr 2030 geschätzt (dena, 2012), sind jedoch mit größeren

Unsicherheiten verbunden, da keine vollständigen und öffentlich zugänglichen

Daten über die Verteilnetze bestehen. Bisherige Studien waren daher auf kleine

Stichproben realer Netze angewiesen und verwendeten Clustermethoden, um die

Gesamtkosten für Deutschland zu schätzen. Diese Methodologie wurde bisher jedoch

nicht untersucht. In dieser Arbeit wird ein Datensatz synthetischer Verteilnetze

verwendet um alternative Clustermodelle und alternative statistische Methoden zur

Schätzung von Clustern zu untersuchen. Diese Modelle und Methoden beinhalten

die zuvor angewendete Methodologie. Darüber hinaus werden weitere Modelle

und Methoden vorgeschlagen und analysiert. Um dies zu erreichen, wird zuerst

ein theoretischer Rahmen entwickelt, in dem 14 Netzattribute identifiziert und

kategorisiert werden, von denen vermutet wird, dass sie die Netzausbaukosten

bestimmen. Jedes dieser Attribute wird dann daraufhin untersucht, wie sehr seine

Berücksichtigung in einem Clustermodell zur Güte dieses Clustermodells beiträgt.

Außerdem werden die Clustermodelle identifziert, die in der geringsten Streuung von

Kosten innerhalb der Cluster resultieren. Basierend auf diesen Ergebnissen werden 57

Clustermodelle ausgesucht und hinsichtlich der Streuung der Kosten und hinsichtlich

der relativen Abweichung der geschätzten Gesamtkosten von den tatsächlichen

Gesamtkosten untersucht. Zudem werden zwei Clustermodelle detailliert ausgewertet

und die geographische Verteilung der Cluster analysiert. In der Analyse werden

durchgehend zwei Schätzmethoden, K-Mean und Regressionsbäume, angewendet und

die Ergebnisse miteinander verglichen. Außerdem wird die Zahl der Cluster K von 5

bis 300 variiert. Für die Ausbaukosten werden zwei Szenarien, ein worst-case Szenario

und ein Szenario mit Abregelung, entwickelt. Insgesamt zeigen die Ergebnisse,

dass das in vorherigen Studien eingesetzte Clustermodell besser als die meisten

vorgeschlagenen alternativen Clustermodelle abschneidet. Die Ergebnisse zeigen

aber auch, dass für jede Zahl an Clustern K mindestens ein Clustermodell besser

abschneidet. Außerdem weisen die Cluster, die mit Regressionsbäumen geschätzt
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werden, im Allgemeinen eine geringere Streuung der Kosten innerhalb der Cluster

und eine geringere relative Abweichung der geschätzten Gesamtkosten von den

berechneten Gesamtkosten auf als die Cluster, die mit K-Mean geschätzt werden.

Vorherige Studien hatten ausschließlich K-Mean als Schätzmethode verwendet.
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1. Introduction

By 2050, the greenhouse gas emissions of Germany shall be reduced by at least 80%

compared to 1990 (Bundesregierung der Bundesrepublik Deutschland, 2010). In order

to achieve this reduction, the German government has set several political targets: the

use of electricity for heating and transportation shall be increased and 80% of electricity

shall be generated from renewable resources (Bundesregierung der Bundesrepublik

Deutschland, 2010). If these targets shall be met, additional renewable energy power

plants need to be integrated into the German power system.

Between 2000 and 2015, the installed generation capacity of renewable energy power

plants in Germany has grown from 11.7 GW to 96.9 GW (BMWi, 2017). Most of this

increase can be attributed to onshore wind (+ 35.2 GW) and solar photovoltaic power

plants (+ 39.2 GW). Projections of Germany’s transmission network operators predict

that between 2015 and 2035 about + 20.3 GW of additional onshore wind and + 35.9

GW of additional solar photovoltaic generation capacity is going to be installed (NEP,

2017). This represents 80% of the total additional generation capacity by 2035 (NEP,

2017). The two technologies are hence expected to dominate the expansion of renewable

energy power plants in Germany also in the next two decades.

When the electrical grid of Germany was designed and constructed, most electricity

was generated by conventional power plants, transmitted by the transmission system,

transformed to lower voltage, and then distributed by distribution networks. In

consequence, the transmission capacity of the grid was relatively large on the

transmission level and relatively small on the distribution level. Because onshore wind

and solar photovoltaic power plants are often located in relatively remote locations

and tend to have a lower generation capacity than conventional power plants, they

are typically connected to the grid on the distribution level. If the expansion of

renewable energy power plants results in demand for additional transmission capacity,

a substantial share of this demand will therefore concern distribution networks (dena,

2012).

The total costs of expanding the German electrical grid on the distribution level until
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1. INTRODUCTION

2030 are estimated at 23 - 40 billion EUR (dena, 2012; BMWi, 2014). This relatively

large range of projected costs signals that these costs are relatively uncertain. The

uncertainty concerns, for example, the extent to which energy storage facilities and

smart grid technologies can reduce the demand for expanding the grid (dena, 2012).

The uncertainty can however also be attributed to the lack of a dataset of distribution

networks in Germany. All estimates of costs are thus based on relatively small samples

of real networks. For example, the costs estimated by dena (2012) are based on networks

that together contain only 0.5% of the estimated total length of lines and cables of the

distribution grid in Germany (Bundesnetzagentur, 2017; dena, 2012).

The lack of a complete dataset of distribution networks in Germany can partly be

explained with the relatively large number of more than 800 distribution network

operators. Each of these private companies operates one or more distribution networks.

The number of networks is therefore even larger. On the low-voltage level, for example,

there are more than 500,000 distribution networks in Germany (Amme et al., 2017). In

order to estimate the total costs of expanding distribution networks, previous studies

used statistical methods developed for cluster analysis (dena, 2012; Rehtanz et al.,

2017; Ackermann et al., 2014). The authors then focused on a relatively small number

of networks which were considered as representative for all networks. The costs

of network expansion were then computed only for these networks. Although this

methodology has already been applied in several studies, its accuracy and robustness

has so far not been examined.

In this thesis, a dataset of synthetic distribution networks is used representing about

84% of the total length of lines and cables of the national electrical grid on the

corresponding voltage level. Based on this dataset, the performance of previously

used and the performance of alternative cluster models is examined. Furthermore, two

methods for estimating the cluster models are implemented and their performance is

analysed and compared.

The thesis is structured as follows. First, the hierarchical structure of the German

power system is described and the typical topology of distribution networks are

explained. Furthermore, some fundamentals of electrical power transmission are

introduced (Chapter 2). Then, the synthetic dataset is described and the methods and

two alternative scenarios of network expansion are introduced (Chapter 3). Next, a
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1. INTRODUCTION

theoretical framework is developed to identify and categorise attributes of distribution

networks that are expected to determine the costs of network expansion. Moreover,

descriptive statistics of the dataset of synthetic networks are given (Chapter 4). Then,

two statistical methods to estimate cluster models, K-Mean and regression trees, are

explained. Moreover, two metrics for the evaluation of cluster models are developed.

The two methods and the two metrics are illustrated with an example (Chapter 5).

In Chapter 6, each of the 14 network attributes is examined regarding its effect on the

within-cluster dispersion of expansion costs if the attribute is included or excluded in

a cluster model. Then, the ten best cluster models are examined and based on these

results, 57 cluster models are selected for further analysis. These cluster models are

analysed with respect to the two metrics. The performance of some of the cluster

models is then directly compared. Finally, two cluster models are analysed in more

detail and the representative networks and the geographic distribution of clusters are

examined.

The results are then discussed in Chapter 7. First, the total costs of network expansion

of the synthetic networks is compared with the total costs that were estimated in

previous studies. Furthermore, the selected 14 network attributes are discussed in

light of previous studies. Then, the relative performance of the K-Mean and the

regression tree method is discussed. Finally, the performance of the cluster model

used by previous studies relative to the performance of alternative cluster models is

discussed. In Chapter 8 conclusions are drawn and opportunities for future research

are pointed out.
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2. Fundamentals of distribution

networks

In this Chapter, some fundamentals on distribution networks are presented. First,

the hierarchy of the German power system is described and the functions and typical

topologies of networks on the medium-voltage and low-voltage level are presented

(Section 2.1). Then, the physical background of thermal limits and voltage limits

of networks is explained and the conditions that determine whether these limits are

violated are described (Section 2.2). Lastly, the context in which distribution network

operators decide on expanding distribution networks is briefly addressed (Section 2.3).

2.1 Functions and typical topologies

Electric power systems can generally be considered to consist of three subsystems:

the generation system, the transmission system, and the distribution system (Gönen,

1986, p. 1). In the generation system, electric power is generated. The generation

system therefore includes all conventional power plants and renewable energy power

plants. In the transmission and in the distribution system, power is transported from

generation units to customers. The transmission and the distribution system can be

distinguished based on different system properties (Biggar and Hesamzadeh, 2014,

p. 53). In general, the transmission system carries a larger amount of power and

carries power over larger distances than the distribution system. In order to reduce

transmission losses, the voltage level is therefore higher in the transmission system

than in the distribution system (Kirtley, 2010, p. 2).

The transmission and the distribution system in Germany can therefore be

distinguished based on their voltage level. The transmission system features extra-high

voltage (≤ 220 kV). The distribution system features high voltage (110 kV), medium

voltage (1-35 kV) and low voltage (< 1 kV).

4



2. FUNDAMENTALS OF DISTRIBUTION NETWORKS

These three voltage levels of the distribution system serve different purposes (Figure

1). On the extra-high and high-voltage level, power is transported over relatively

long distances and generation units with a relatively large generation capacity such

as nuclear power plants or large wind farms are connected to the grid. Furthermore,

very large industrial consumers are connected. On the medium-voltage level, power

is transported over smaller distances and smaller generation units such as wind power

plants as well as smaller industrial consumers are connected. On the low-voltage level,

power is transported to small consumers. Furthermore, small generation units such as

roof-mounted photovoltaic installations are connected.

High voltage
110 kV

Medium voltage
1 - 35 kV

Low voltage
< 1 kV

Extra-high voltage
≥ 220 kV

Tr
a
n
s
m

is
s
io

n
D

is
tr
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u
ti

o
n

Small PV

power plants

Small wind

power plants

Large PV

power plants

Large wind

power plants

Very large PV

power plants

Conventional

power plants

Industry

Industry / 

business

Households / 

small business

International

exchange

Figure 1: The German power system can be divided into the transmission and the distribution
system, each with different voltage levels. For simplification, only two technologies
for generating electricity from renewable resources are shown. Figure adapted from
Gust (2014).

The three voltage levels feature different network topologies in the German electrical

grid (Figure 2). On the high-voltage level, networks typically feature a meshed
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2. FUNDAMENTALS OF DISTRIBUTION NETWORKS

structure. On the medium-voltage level, most networks feature a ring structure. These

networks are usually equipped with a switch disconnector and therefore operated as

radial networks. In case of one line or one equipment failure, the open segment can

then be closed in order to maintain power supply. Meshed networks and ring networks

therefore comply with the n-1 criterion. On the low-voltage level, most networks are

radial networks (Amme et al., 2017).

Radial network Ring network Mesh network

Figure 2: Typical simplified topologies of electricity networks in Germany. Figure adapted from
dena (2012).

In this thesis, the medium-voltage and the low-voltage levels of the electrical grid are

analysed. The main reason is that in Germany the availability of data is much better

for networks on the high-voltage level than for networks on the medium- and on the

low-voltage level. Much less is therefore known about the costs of network expansion

on the medium- and low-voltage level. Furthermore, the focus on the medium-voltage

and low-voltage level is supported by the fact that in 2012 about 95% of renewable

energy power plants were connected to these two voltage levels (dena, 2012) and that

previous research has attributed about 50% of total expansion costs to the expansion of

medium-voltage and low-voltage networks (dena, 2012; BMWi, 2014; NEP, 2017).
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2. FUNDAMENTALS OF DISTRIBUTION NETWORKS

2.2 Thermal limits and voltage limits

The amount of power that can be transported in a network while maintaining safety of

operation is determined by certain properties of the network. This amount of power

can be referred to as the transmission capacity of the network. If this amount is

exceeded, technical equipment of the network becomes too warm. For this reason,

the transmission capacity of a network can also be referred to as the thermal limit of the

network. Furthermore, in order to ensure stability of the network and functioning of all

connected devices, the voltage of a network needs to be kept within certain limits. The

thermal limit and the voltage limits of a network are determined by certain properties

of its technical equipment, such as the type and length of a cable or line.

R X
I

ΔU

Figure 3: Simple model of an electric line with resistance R, reactance X , current I and drop of
voltage ∆U .

Figure 3 shows a model of an electric line. The line features a resistance R and

a reactance X , which are the real and the imaginary part of the impedance Z,

respectively:

Z = R+ j ·X (2.1)

If the current I is transported along the line, the voltage U between the two ends of the

line differs. This difference ∆U can be related to the current and the reactance of the

line as follows:

∆U = I · Z (2.2)

In the model in Figure 3 the line consists of only one line segment. Equations 2.1 and 2.2

can also be formulated for the more general case of a line consisting of n segments. In

this case the total voltage drop ∆U����� can be calculated from the sum of the impedance

7



2. FUNDAMENTALS OF DISTRIBUTION NETWORKS

of each segment multiplied by the corresponding current:

∆U����� =

�︁

�=1

I� · Z� (2.3)

Whether a network is capable of hosting an additional renewable energy power plant

with a certain generation capacity at a certain node within the network depends also

on the thermal limit. This thermal limit is determined by the maximal allowed current

I��� of the technical equipment. If the expected current exceeds I���, the transmission

capacity needs to be enhanced. If several additional power plants are connected to a

network, it is most likely that thermal limits are exceeded at the line segment closest to

the transformer station. This is because the current fed into the network by each of the

additional power plants sums up to a total additional current there (Figure 4).

An additional renewable energy power plant can also result in a total voltage drop

along a line that violates a voltage limit. In Germany, the maximum allowed deviation

of actual voltage from the nominal voltage of a line ∆U��� on the low-voltage level is

10% (DIN, 2011). Voltage limits are typically exceeded at the end of a line because the

drop of voltage increases along the line from the HV/MV transformer station to the

terminal node (Equation 2.3 and Figure 4).

I > Imax

G G G G G

ΔU > ΔUmax

G G G G G

Figure 4: Locations of electricity networks at which thermal limits (top) and and voltage
limits (bottom) are typically violated. The letter G denotes generation units such as
renewable energy power plants. Figure adapted from dena (2012).
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2. FUNDAMENTALS OF DISTRIBUTION NETWORKS

2.3 Network expansion

Each distribution network operator (DNO) is responsible for the safe operation of its

network in Germany. This means that each DNO is also responsible for avoiding that

thermal limits and voltage limits are exceeded. If the expected or the actual network

status indicates that this is going to happen, the DNO can resolve the situation using

one of several measures. The feasibility of these measures depends on the remaining

time until the exceedance occurs. Furthermore, the DNO can base his decision on

cost-benefit considerations.

If the DNO aims to prevent future exceedances of thermal or voltage limits by an

expansion of the transmission capacity of the network, it can either install additional

equipment such as overhead lines, underground cables or transformers, exchange

existing equipment for equipment with larger transmission capacity, or change the

topology of the network. These measures and the criteria for choosing among them

have been described, for example, by Ackermann et al. (2014), dena (2012) and Rehtanz

et al. (2017). The expansion of networks of the dataset used in this thesis is described in

Section 3.4.
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3. Dataset of synthetic networks

The dataset of synthetic electricity networks at medium- and low-voltage level in

Germany that is analysed in this thesis was produced as part of the project open_ego.

For this purpose, the software ding0 and the software eDisGo were written and used.1

The networks are constructed based on the spatial distribution of load areas and

generation units in Germany. In this Chapter, first the nature of load areas and their

spatial distribution are briefly described (Section 3.1). Then, the spatial distribution of

generation units is introduced (Section 3.2). Next, the construction of the synthetic

networks is briefly explained (Section 3.3). Finally, the computation of the costs of

network expansion for two scenarios is described (Section 3.4). More details on the

dataset and the construction of the networks can be found in Hülk et al. (2017) and

Amme et al. (2017).

For the work of this thesis, the author was provided with the final dataset. This dataset

includes information on the medium-voltage network of each district, the associated

low-voltage networks, the installed capacity of current and future generation units in

that district, and the costs of network expansion for the two scenarios of electricity

generation. The construction of the dataset was thus not part of the thesis but is

explained here to anticipate the interpretation of the results in Chapter 6. The definition

and implementation of the network attributes described in Chapter 4 was done by the

author as part of this thesis.

3.1 Load areas and grid districts

Load areas are geographical polygons that aggregate individual points at which

electricity is consumed. Load areas are identified based on data of land use and

data of industrial infrastructure from the OpenStreetMap database (OSM) and data

of population from the census 2011 for Germany (Hülk et al., 2017). Each load area

1The software of the project open_ego can be accessed online and downloaded from GitHub: https:

//github.com/openego.
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3. DATASET OF SYNTHETIC NETWORKS

is assigned four sector-specific electricity demand curves. The four sectors are the

residential, retail, industrial and agricultural sector. The demand cures are derived

from aggregated sectoral demand curves for Germany and allocated to each load area

according to the approximate share of the sectoral gross value added (retail, industry,

agriculture) and according to the approximate share of the total population of Germany

(households).

HV/MV transformer station

Load area

Boundaries of MV grid districts

Industry Retail

Households Agriculture

Electricity demand curves

Figure 5: Schematic illustration of medium-voltage network districts and load areas. Figure
based on Amme et al. (2017).

For the construction of the dataset Germany is divided into about 3600 medium-voltage

grid districts. These districts are based on locations and voltage levels of transformer

stations, which are in turn taken from the OSM database. First, for each HV/MV

transformer station the administrative boundaries of its municipality are used to define

a geographical polygon (Figure 5). If there is more than one transformer station in one

municipality, the municipality is split into further polygons using Voronoi partitioning

(Hülk et al., 2017). It is then assumed that all load areas and generation units within one

polygon are connected to the transformer station of that polygon. Each of the polygons

therefore represents one medium-voltage grid district (Hülk et al., 2017).

The final dataset consists of 3606 medium-voltage grid districts covering the entire area

of Germany. They are on average 99km2 large. In these grid districts overall 208,486
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3. DATASET OF SYNTHETIC NETWORKS

load areas are located. Each load area is assigned to one district. The typical size of load

areas is about 5ha (Hülk et al., 2017).

3.2 Existing and future power plants

For existing power plants in Germany, their locations are taken from public datasets

(Hülk et al., 2017). Because this location is only approximately known, their allocation

to grid districts and their exact location within these districts is further determined

by an algorithm described in Hülk et al. (2017). The installed generation capacity of

future power plants are taken from the scenario 2035B of the Netzentwicklungsplan

2030 (Table 1).

Table 1: Total installed capacities of different electricity technologies in the scenario NEP 2035B.

Installed capacity [GW] Changes 2035 vs. 2015

Technology 2015 2035 GW %

Natural gas 27.9 33.5 5.6 20
Hard coal 31.5 11 -20.5 -65
Oil 4.5 0.5 -4 -89
Waste 1.7 0.5 -1.2 -71
Biomass 7.2 8.4 1.2 17
Lignite 22.9 9.1 -13.8 -60
Uranium 12 0.5 -11.5 -96
Mixed fuels 2.6 2.4 -0.2 -8
Wind onshore 41.3 88.8 47.5 115
Wind offshore 5.6 18.5 12.9 230
Solar 38.5 59.9 21.4 56
Run off river 3.9 4.2 0.3 8
Reservoir 1.4 0 -1.4 -100
Pumped hydro 9.3 12.7 3.4 37

For future power plants, the total installed generation capacity of each technology is

first allocated to medium-voltage grid districts. Within these districts, the installed

capacity is then used to define a set of future power plants with certain generation

capacities. These plants are then assigned to either the medium-voltage level or the

low-voltage level, depending on their technology and nominal generation capacity

(Amme et al., 2017). If a power plant is allocated to the medium-voltage level, the

algorithm chooses a location in the medium-voltage grid district and the power plant

is connected to the medium-voltage network (Section 3.3). If it is assigned to the

low-voltage level, it is allocated to one of the low-voltage districts and there connected
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3. DATASET OF SYNTHETIC NETWORKS

to the low-voltage network (Section 3.3).

The geographical distributions of installed generation capacity in the years 2015 and

2035 for onshore wind and solar photovoltaic are shown in Figure 6 and 7, respectively.

(a) (b)

Figure 6: Geographic map of total installed generation capacity of onshore wind power plants
in medium-voltage network districts in the dataset for the year (a) 2015 and (b) 2035.

(a) (b)

Figure 7: Geographic map of total installed generation capacity of solar photovoltaic power
plants in medium-voltage network districts in the dataset for the year (a) 2015 and (b)
2035.
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3. DATASET OF SYNTHETIC NETWORKS

3.3 Medium- and low-voltage networks

Based on the spatial distribution of load areas and medium-voltage grid districts

(Section 3.1) and the spatial distribution of generation units (Section 3.2), the software

ding0 constructs a network topology for each of the medium-voltage grid districts

connecting load areas and generation units to each other and to the transformer station.

In the following, the algorithm is briefly described. More details can be found in Amme

et al. (2017).

For the connection of load areas to the network, each load area is first categorised as

either regular load area, satellite load area, or aggregated load area. Regular load areas

feature a peak load ≥ 100kVA. The centre of each regular load area is always integrated

into one of the rings of the medium-voltage network. Furthermore, each regular load

area features regularly spaced MV/LV transformer stations (Figure 8). Each MV/LV

transformer station is then assigned one of the 196 low-voltage network, which is

randomly chosen from a sample of idealised low-voltage networks with simple radial

topology (Figure 8).

The second category of load areas are satellite load areas. These are load areas with a

peak load ≤ 100kVA. Satellite load areas are also connected to the medium-voltage grid

and also feature several low-voltage grid districts. However, they are not necessarily

integrated into one of the rings on the medium-voltage network and can also be

connected to a branch of the network (Figure 8).

The third category of load areas are aggregated load areas. They are defined as load

areas that require a cable with transmission capacity ≥ 1kVA km−1. Aggregated

load areas represent urban areas. Loads and generators in this area are treated as

one aggregated production and consumption unit. Aggregate load areas are directly

connected to the HV/MV transformer station. Furthermore, in contrast to regular load

areas generation capacity and load within aggregated load areas is directly connected to

the HV/MV substation’s bus bar. Aggregated load areas are therefore not decomposed

into low-voltage districts and the low-voltage networks are not explicitly modelled

(Figure 8). This is because networks in urban areas are assumed to feature a high

enough transmission capacity and local demand of electricity that they can host future

renewable energy plants without network reinforcements. Their network topology at
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3. DATASET OF SYNTHETIC NETWORKS

the low-voltage level is therefore considered to be irrelevant for total reinforcement

costs (Amme et al., 2017).

Generator units are allocated to medium-voltage grid district and assigned to either

the medium-voltage or the low-voltage level depending on their generation capacity

(Section 3.2). If they are assigned to the medium-voltage level, they are placed

somewhere in the medium-voltage grid district and can be either integrated into one

of the rings or connected to a branch of the network. This is determined by the

algorithm. If they are assigned to the low-voltage level, they are allocated to one of

the corresponding low-voltage grid districts and there connected to the low-voltage

network (Figure 8).

In sum, all synthetic networks on the medium-voltage level feature a topology

consisting of rings and branches (Figure 8). This topology is constructed using a

sophisticated algorithm (Amme et al., 2017). Networks on the low-voltage level feature

a radial structure (Figure 8). Their topology is determined by a random choice of one

of 196 idealised radial low-voltage networks. The topology of these idealised networks

is based on Scheffler (2002) and Kerber (2010).

The final dataset consists of medium-voltage districts of the electricity distribution

system. These districts can be considered as distinct parts of the distribution system

because each district is connected to the transmission system only by one HV/MV

transformer station and because the districts are connected to each other only via

the transmission system. Each observation of the dataset hence represents one

medium-voltage district and the corresponding distribution network. This distribution

network consists of one medium-voltage network and potentially several low-voltage

networks, depending on the number and category of load areas in the district.

When the topology of all networks has been determined, all load areas and generation

units have been connected to the distribution network. The technical equipment

required to safely operate the network (cables, cable distributors, transformers, switch

disconnectors) is then determined using a power flow simulation. For this purpose, two

situations are assumed. First, a situation with maximum load and minimum generation

in the distribution network. Second, a situation with minimum load and maximum

generation. The technical equipment is chosen such that neither voltage nor thermal

limits are exceeded in any of the two situations. If necessary, also the topology of the
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HV/MV transformer station

Regular load area

Satellite load area

Aggregate load area

MV/LV transformer station

Load area with MV/LV

transformer stations
Low-voltage network

(idealised topology)

Medium-voltage network

(complex topology)

G

G

G

G Generator unit

G

G

Switch disconnector

L

L

L Load

Figure 8: Schematic illustration of medium-voltage network district with load areas,
low-voltage network districts and low-voltage networks. Figure based on Amme et al.
(2017).

distribution network is step-wise adjusted until a technically viable state of the network

is obtained (Amme et al., 2017). This state considers only power plants existing in 2015.

The algorithm used to determine the equipment and the costs of network expansion for

scenarios with additional future generation units (Section 3.2) is explained in Section

3.4.

3.4 Scenarios of network expansion

For the scenario with additional future generation units (Section 3.2), the generation

units are first allocated to a medium-voltage grid district and assigned to either the

medium-voltage or the low-voltage level as described in Amme et al. (2017). They are
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then connected to the corresponding medium-voltage or low-voltage network using

the algorithm described in Section 3.3.

For the connection of the generation units to the network a standard technical

equipment can be used. This equipment does however not yet ensure that the network

can operate in a safe state and that technical limits are maintained. To determine the

additional equipment needed to ensure safe operation, the power flow in the network

is simulated. Because the networks are already designed to cope with a situation with

high load and low generation (Section 3.3), at this step only a situation with low load

and high generation is simulated.

For this thesis, two scenarios of high generation are considered. The first scenario is

a worst-case scenario. In that scenario, all generation units except solar photovoltaic

power plants feed in 100% of their nominal installed generation capacity. Solar

photovoltaic power plants feed in 85% of their nominal capacity. The load is set to

20% of peak load.

The second scenario is a scenario with curtailment. For this scenario, the locations

of onshore wind and solar photovoltaic power plants are combined with re-analysis

weather time-series for the year 2011. From this, for each power plant a time-series of

generation is constructed. Then, for each medium-voltage grid district the hour of the

year 2011 with the maximum sum of generation from solar photovoltaic and onshore

wind power plants is identified. For this hour, it is assumed that both photovoltaic

power plants and onshore wind power plants are curtailed at 70% of their nominal

installed capacity. Furthermore, it is assumed that all other power plants feed in

100% of their nominal capacity. The load is again set to 20% of peak load. For the

curtailment scenario, each medium-voltage network is therefore expanded according

to the demand for transmission capacity in a potentially different hour of the year.

However, the scenario is consistent in the sense that for each network the hour of the

year is used in which, assuming a curtailment at 70%, the demand for transmission

capacity is maximum.

Both scenarios therefore represent situations with high generation and low load. Both

scenarios are from an economic perspective unrealistic because in a situation with high

generation from power plants using fluctuating renewable energy sources, electricity

prices tend to be relatively low and the generation from conventional power plants is

17



3. DATASET OF SYNTHETIC NETWORKS

therefore likely to be low or even zero. However, this assumption is consistent with grid

codes for distribution network operators in Germany and therefore current practice of

network expansion (BDEW, 2008; VDE, 2011).

If the results of the power flow simulation of the respective scenario indicates that either

a voltage or a thermal limit is exceeded, the transmission capacity of the network is

expanded.2 The expansion is done iteratively until no violation of voltage and thermal

limits occurs any more with the following steps (Schachler, 2017):

First, all line segments at which thermal limits are exceeded are reinforced. This is done

at the medium-voltage and at the low-voltage level. If a line segment can be sufficiently

reinforced by adding one cable of the same type as the existing cable, a parallel line

with this cable type is laid. Otherwise, the existing cable is replaced by a the standard

cable type with sufficient transmission capacity. The reinforcement is likewise applied

to transformers. If the current of a transformer station exceeds its technical limit, an

additional transformer is added or the transformers are replaced. All reinforcements

are applied simultaneously. This neglects that reinforcements in one line segment may

affect the current in other line segments due to changes to impedance but has the

advantage that the resulting network is independent of the order of reinforcements.

Second, violations of voltage limits are resolved. The order of reinforcements matters

more for the violation of voltage limits than for thermal limits. For this reason, the

following order was chosen. First, violations of voltage limits at the medium-voltage

level are resolved. When all violations on the medium-voltage level are resolved, the

MV/LV transformer stations are addressed. If the voltage of the low-voltage network

close to the transformer station is close to the limit, transformers are added to the

transformer station in order to reduce its impedance. Lastly, violations of voltage limits

at the low-voltage level are resolved. The algorithm of the reinforcement is the same on

the medium-voltage and on the low-voltage level and described in the following.

For each branch of the network, first the largest violation of a voltage limit is identified.

This violation is resolved by laying a parallel line with the same transmission capacity

over 2
3 of the length of the line. If this does not yet sufficiently reduce the voltage

deviation, another line is laid parallel to the second one to further reduce the line

impedance. This is iteratively done until the voltage deviation is sufficiently small.

2The terms extension, expansion and reinforcement of networks are used synonymously in this thesis
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When the largest violation of voltage limits has been resolved, the power flow in the

updated network is simulated. Then the largest violation of the remaining violations of

voltage limits is resolved. This is done iteratively: after each successful reinforcement,

the power flow is simulated in order to determine whether the reinforcement already

resolved other violations of voltage limits.

The costs of network expansion are calculated by multiplying the required equipment

by its market prices. The prices are taken from the OpenEnergyPlatform3 and originate

from several published sources (Ackermann et al., 2014; Consentec et al., 2006; dena,

2012; Rehtanz et al., 2017).

Finally, the worst-case scenario and the curtailment scenario are therefore represented

by costs for network expansion for each medium-voltage grid district. The

geographical distributions of these costs are shown in Figure 9. There is no clear

North-South or East-West gradient of costs. Furthermore, there are no clear regional

hotspots of costs. Similar to the geographical distribution of installed capacity of

renewable energy power plants (Figure 6 and 7) the costs do not follow any clear spatial

patterns.

(a) (b)

Figure 9: Geographic map of costs of network expansion of medium-voltage network districts
in the dataset for the (a) worst-case scenario (SCEN1) and (b) curtailment scenario
(SCEN2).

3The platform is accessible online at: https://oep.iks.cs.ovgu.de/
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4. Network attributes

The demand for expansion of distribution networks in Germany is driven by a number

of factors. When the distribution grid was planned and built, its capacity was oriented

at the maximum amount of power that is consumed at the terminal end of a branch.

Power was generated by few centrally located power plants and from these plants

transported into regions and to consumers. Today, more and more power is generated

locally. Whenever the amount of power that is locally generated exceeds what is locally

consumed, the excess power needs to be transported away. This means that today in

many places power flows in reverse direction and additional transmission capacity on

the distribution level is required.

The approach taken in this thesis is to estimate the total costs of network expansion

using a cluster analysis (Chapter 5). Clusters of networks, in turn, require network

attributes that somehow determine the expansion costs of an individual network. The

network attributes are selected based on theoretical considerations on the relationship

between network attributes and expansion costs. Each attribute can be assigned to one

of four categories (Figure 10). The first category contains attributes that are considered

as drivers of the demand for hosting capacity (Section 4.1). In this context, hosting

capacity describes the capability of a network to host additional power plants. The

second category comprises attributes that describe the supply of hosting capacity

(Section 4.2). The third category includes attributes that determine the occurrence

of violations of voltage or thermal limits (Section 4.3). The fourth category contains

attributes that determine the costs of the technical equipment required to resolve a

potentially violated technical limit (Section 4.4).

Overall, 14 network attributes are identified and selected for the analysis in the

following Chapters. Their selection was based on theoretical considerations and

presented and discussed with experts from the Reiner-Lemoine-Institute Berlin. Finally,

for these network attributes descriptive statistics are given (Section 4.5).

In addition to the network attributes described in the following, there may be other
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Figure 10: Theoretical framework to identify and categorise network attributes that potentially
determine the costs of network expansion on the distribution level.

factors that determine the costs of network expansion. The authors of dena (2012)

expect, for example, that there are peculiarities of states and regions in Germany

which influence costs. Examples for these peculiarities are historically evolved

typical network structures, the status of ongoing network development, and different

principles applied in network development. However, these factors are not taken into

account in the synthetic dataset and therefore not discussed here.

4.1 Demand for hosting capacity

The main driver of additional demand for transmission capacity in distribution

networks are additional generation units (dena, 2012). In Germany, most additional

future generation units are projected to be onshore wind and solar photovoltaic power

plants (Table 1). Other drivers are, for example, changes in the use of power in other

energy sectors (due to e.g. technological innovations such as heat pumps or electrically

powered transport vehicles) and changes in the demand for power by existing power

consumers. However, in the project open_ego and therefore also in this thesis it is

assumed that the power demand does not change until 2035. This is assumption is not

realistic but it is made to focus on the costs due to changes in generation technologies.

In this thesis the currently and the future total installed generation capacity of onshore
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wind and solar photovoltaic power plants are included as network attributes. All

other technologies of electricity generation are neglected. Non-renewable technologies

are excluded because according to the scenario B of the NEP, their total generation

capacity will decrease until 2035 (Table 1). This means that these technologies are

unlikely to incur significant network expansion costs. Furthermore, most power plants

using non-renewable technologies are connected to networks on the extra-high and

high-voltage level.

The only non-renewable technology that does not show a decreasing trend and whose

plants are sometimes connected to the medium-voltage level is natural gas. However,

increases in total installed capacity of natural gas are both in absolute and relative terms

substantially smaller than changes for onshore wind and solar photovoltaic (Table

1). The same is true for other renewable energy technologies including biomass and

pumped hydro (Table 1). Off-shore wind plants are excluded because they are generally

connected to the extra-high- or high-voltage grid.

4.2 Supply of hosting capacity

Whether an additional demand for transmission capacity (Section 4.1) requires the

expansion of the network depends on the supply of transmission capacity. Because

historically transmission capacities were chosen to satisfy situations with high load

and low generation, it is expected that the higher the aggregate load in a grid district,

the larger the existing transmission capacity of the network (Chapter 2). Although the

relatively large transmission capacity may have been intended to transport the amount

of power required to cover the peak load, it can likewise be used in situations with

minimum load and maximum generation to transport power away from generation

units.

4.3 Thermal limits and voltage limits

Future additional demand of transmission capacity (Section 4.1) that exceeds the supply

of hosting capacity of a network (Section 4.2) can result in a violation of technical

limits. These technical limits are thermal limits and voltage limits. Thermal limits
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are violated if the current becomes too large. Thermal limits are typically violated

close to the transformer station (Section 2.2, Figure 4). The transmission capacity of

the first line segment of a branch is therefore included as network attribute, both on the

medium-voltage and on the low-voltage level.

HV/MV transformer station

MV/LV transformer station

Generator

Load

Switch disconnector

Figure 11: Schematic illustration of an electricity distribution network with medium-voltage
and low-voltage level. Terminal nodes are either generators (G) or loads (L). First
segments of network paths on medium-voltage level and low-voltage level denoted
as FSMV and FSLV, respectively.

Without any knowledge about the position of future additional generation units in the

grid district, it is assumed that new plants will be connected to one of the existing

terminal nodes of the network. These terminal nodes are either generation units or

loads. All terminal nodes are assumed to be equally likely. For this reason, the network

attribute describing the likelihood of a violation of a thermal constraint is defined as

the mean value of the transmission capacity of the first segments of all network paths

to terminal nodes in the same district.

The network attribute is computed for both the medium-voltage and the low-voltage

level. For the medium-voltage level, all terminal nodes irrespective their voltage level

are used. Furthermore, the transmission capacity of the first segment of the path

starting at the HV/MV station is used (FSMV in Figure 11). For the computation of

the mean transmission capacity on the low-voltage level, only terminal nodes on the

low-voltage level are used. Furthermore, the transmission capacity of the first segment

of the path starting at the MV/LV station is used (FSLV in Figure 11). Furthermore, for

the low-voltage level the mean transmission capacity is first computed for each MV/LV

station and then averaged over all MV/LV stations in the network district.
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For example, in Figure 11 each generator G1, G2, G3, ... and each load L1, L2, L3,

...represents one terminal node. Each of these terminal nodes is connected to the

HV/MV transformer station with one unique network path (in standard operation, the

switch disconnectors are open). In order to compute the network attribute based on the

mean transmission capacity on the medium-voltage level, for each of these paths the

transmission capacity of the first segment of the path on the respective voltage level

(e.g. FSMV1 for G1 and L1 and FSMV3 for G10 on the medium-voltage level) is used.

Voltage limits are typically violated at the end of a line because the total impedance

of the line has its maximum value there (Section 2.2, Figure 4). It is again assumed

that each terminal node is equally likely to be chosen as position of a future generation

unit. For this reason, the network attribute describing the likelihood of a violation of

a voltage constraint is defined as the mean value of the total impedance of all network

paths to terminal nodes. For the computation of the impedance, no distinction is made

between the medium-voltage and the low-voltage level because the voltage drop along

a line is determined by the total impedance across voltage levels. Furthermore, for

terminal nodes on the low-voltage level the voltage drop over the transformer station

is added.

For example, in Figure 11 the total impedances of all network paths to terminal nodes

G1, G2, G3, ... and L1, L2, L3, ... irrespective their voltage levels are averaged.

Each of the two attributes is defined to describe the likelihood of a violation of either a

thermal limit or a voltage limit. Because the costs of network expansion are determined

by the number of violations that need to be resolved, two additional network attributes

are included. These are the number of outgoing branches from the transformer station

on the medium-voltage level and on the low-voltage level, respectively.

4.4 Technical equipment

If a technical limit of a network is violated (Section 4.3), the network can be expanded to

resolve the violation. In this context, expansion can mean the replacement of existing

equipment (e.g. exchange of a cable for a cable with larger capacity) and the use of

additional equipment (e.g. laying a parallel cable; see also Section 3.4). The costs of

these measures are mainly determined by the type of and the amount of the required
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equipment. This type of and amount of additional equipment is likely to be related

to the type of and amount of existing equipment. For example, in a grid district with

relatively long cables it is likely that also relatively long cables are required for network

expansion.

In this thesis, the total length of lines and cables on the medium-voltage and on the

voltage level are therefore included as network attributes. Furthermore, the total

capacity of HV/MV transformers and of MV/LV transformers are included to account

for the costs of their reinforcement.

4.5 Descriptive statistics

In this thesis, the estimation of expansion costs is based on a dataset of synthetic

networks. The dataset was created using open-access data on demand and supply of

electricity and covers the whole area of Germany with 3608 network districts. For 2928

(81%) of these districts, network attributes and expansion costs were computed. The

remaining 680 districts are neglected because expansion costs could not be computed.

The total length of lines and cables of the synthetic networks on the medium-voltage

level is 428 869km. This corresponds to 84% of the total length of lines and cables on

the medium-voltage level in Germany (Bundesnetzagentur, 2017).

In order to facilitate the illustration, description and discussion of results, the selected

network attributes are in the remainder of this thesis denoted by short labels. These

labels are shown in Table 2. Furthermore, descriptive statistics of each of the 14 network

attributes are presented in Table 3.
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Table 2: Network attributes as defined in this Chapter and used throughout this thesis. Labels
are used in text and illustrations in the following Chapters.

Label Network attribute

WIND_2015 Installed generation capacity of onshore wind power plants in 2015
WIND_2035 Installed generation capacity of photovoltaic power plants in 2015
SOLAR_2015 Installed generation capacity of wind power plants in 2035
SOLAR_2035 Installed generation capacity of photovoltaic power plants in 2035
LOAD Aggregated peak load
IMPEDANCE Impedance of paths to terminal nodes (mean value)
IMAX_MV Thermal limit of first segment of path from MV station to terminal

node (mean value)
IMAX_LV Thermal limit of first segment of path from LV station to terminal node

(mean value)
NLINES_MV Number of lines and cables going out from MV stations
NLINES_LV Number of lines and cables going out from LV stations (mean value)
LENGTH_MV Length of underground cables and overhead lines on MV level
LENGTH_LV Length of underground cables on LV level
TRAFO_MV Total capacity of transformers HV/MV
TRAFO_LV Total capacity of transformers MV/LV

Table 3: Descriptive statistics of network attributes for the 2928 network districts in the dataset.
Each observation in the dataset represents one medium-voltage network district
including the corresponding networks on the low-voltage level.

Label Unit Minimum Median Mean Maximum

WIND_2015 kW 0 0 5470 151943
WIND_2035 kW 0 3 13048 293816
SOLAR_2015 kW 0 6813 10901 156171
SOLAR_2035 kW 0 10630 16106 193939
LOAD kW 156 19000 25606 551262
IMPEDANCE Ohm 166 1468 1901 11657
IMAX_MV A 210 362 377 609
IMAX_LV A 218 294 297 419
NLINES_MV - 2 6 7 65
NLINES_LV - 1 232 306 2373
LENGTH_MV km 2 107 147 1135
LENGTH_LV km 0 110 141 824
TRAFO_MV kVA 40000 80000 102007 1028000
TRAFO_LV kVA 50 11730 16292 133820
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5. Methods for cluster analysis

Groups of observations that are relatively similar can be referred to as clusters. These

clusters can be identified with cluster analysis. There exist several alternative methods

for the identification of clusters. In this thesis, the identification of clusters is also

referred to as estimation of clusters. Methods from both supervised and unsupervised

statistical learning can be used for this purpose. Clusters are typically estimated using

one of several alternative algorithms based on a certain criterion of similarity between

observations (Hastie et al., 2009).

Cluster estimation can be used to reduce the number of observations for a certain

subsequent computation. Once the clusters have been identified, one or several

observations can be selected for each cluster. These selected observation can then be

used for the computations. Based on the fact that observations of the same cluster

are more similar than observations of different clusters, it is then often assumed that

the results of the computation for the selected observations are representative for all

observations of the same cluster.

Because the computation of the costs of network expansion requires a lot of computing

resources, it can only be done for relatively few selected distribution networks. The

main aim of the cluster estimation in this thesis is therefore to identify representative

networks, which can then be used to reduce the required time and resources for

subsequent computations of the costs of network expansion, potentially for several

alternative scenarios. Based on the assumption that the costs of the selected networks

are representative for the costs of all networks of the same cluster, the representative

networks can then be used to estimate the total costs of all networks.

An alternative method to estimate the total costs of all networks from the costs of few

selected networks would be to train a model based on the sample of networks and

use this model to estimate the total costs. This approach could be referred to as a

prediction model. The main advantage of cluster analysis is that once the clusters

and the representative networks have been identified, they can be used for several
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computations. For example, the representative networks can be used to compute

expansion costs for alternative scenarios of future generation technologies. With

prediction models one would need to estimate one model for each of the scenarios.

Furthermore, cluster analysis can be used to describe certain structures within a dataset.

For example, once clusters of electricity networks have been identified, these clusters

can be used to identify a set of typical networks. These networks can be used,

for example, to derive classes of networks. Furthermore, the typical networks can

be used to map their occurrence across Germany in order to visualise and analyse

regional differences of distribution networks. Prediction models can allow one to

identify typical observations, for example in the case of regression trees that are used

as prediction models, but not all prediction models and estimation methods produce

groups of observations.

In this thesis, two methods for cluster estimation are used. These are K-Mean

and regression trees. Both methods provide first an assignment of observations to

clusters and second one representative observation for each cluster. However, the

way how observations are grouped into clusters and the way how the representative

observations are identified differ between the two methods. The two methods, K-Mean

(Section 5.1) and regression trees (Section 5.2) are described in the following. Then,

two metrics are introduced and explained that can be used to evaluate the performance

of a cluster model (Section 5.3). Finally, a simple example is given that illustrates the

application of the two estimation methods, their differences and the two metrics for

evaluation (Section 5.4).

5.1 K-Mean

One of the most popular methods for cluster analysis is K-Mean estimation (also

referred to as K-Mean in the following) (Hastie et al., 2009). K-Mean requires that

the number of clusters K is specified. Each observation i = 1, ..., N with p attributes

X� = (x�1, ..., x��) is then assigned to one of the K clusters based on its distance from

the clusters’ centroids. The centroids of clusters are points in the p-dimensional space

of attributes. They can be determined by an algorithm that minimises the sum of

distances of observations from the centroid of the cluster to which they are assigned.
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The clusters are created in an iterative procedure (Hastie et al., 2009). The main result

of the algorithm is an assignment of each observation i = 1, ..., N to one cluster with

index k = 1, ...,K, which can be written as an assignment function C(i) = k.

For K-Mean, the Euclidean distance D(·, ·) is typically used as measure of distance

between observations. This means that the result of K-Mean is relatively sensitive

to outliers. For this reason, Hastie et al. (2009) recommend to use the more robust

K-Medoid if it is computationally feasible. K-Medoid was tested but the computation

time turned out to be too large for this thesis.

The assignment of observations to clusters, represented by the assignment function

C(·), can be evaluated based on a measure of the within-cluster dissimilarity W�(·)

(James et al., 2017):

W�(·) =

�︁

�=1

�︁

�=1

D(X�,M�)I�(X�) (5.1)

whereby M� is the centroid of cluster k and I�(·) is an indicator function:

I�(X�) =

⎧

⎨

⎩

1 if C(i) = k

0 otherwise
(5.2)

K-Mean requires an initial assignment of observations to clusters C(·)init. The final

clusters are sensitive to this assignment. In order to choose the initial assignment, the

cluster estimation can be repeated several times with random initial assignments. One

can then choose the initial assignment C(·)init and its corresponding final assignment

C(·) that results in the lowest value of W�(·). The algorithm used in this thesis does this

by itself.

The number of clusters K needs to be specified. In this thesis, cluster models are

estimated for K = 1, ..., 20 to analyse how K influences the quality of the cluster model.

The value of K can also be chosen based on the structure of the data. For example,

Tibshirani et al. (2001) propose to generate a synthetic data set with observations

uniformly distributed over a rectangle that includes all observations of the actual data

set. They propose to compute W� ≡ W�(·)|�=� from the actual data set (log(W�)) and

from the synthetic data set (log(W �
�)) for different K. The optimal value K⋆ can then
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be obtained as:

K⋆ = argmax
�

log(W�)− log(W �
�) (5.3)

The optimal value K⋆ was investigated but it was finally decided not to include the

results in this thesis. The reason is that the main objective of this thesis is not to

describe certain properties of the dataset of synthetic networks, such as the optimal

number of clusters for certain network attributes, but rather to compare alternative

cluster models for a fixed value of K in order to determine which value of K provides

a good balance between model performance and the required computing resources. In

this context, model performance refers to the error made by using only K representative

observations to estimate the total costs of network expansion. Because this model

performance generally tends to increase with K, it is the constraint of computational

feasibility rather than the structure of the dataset which determines the “optimal” value

of K.

The results of K-Mean are the final assignment of observations to clusters C(·) and the

coordinates of the centroid of each cluster M�. The observation with the minimum

distance to the centroid of its cluster can then be chosen as representative observation

of that cluster. The coordinates of the representative observation of cluster k can be

written as X̃� and are determined by:

X̃� = argmin
�i|�(�)=�

D(X�,M�) (5.4)

The Euclidean distance assigns equal weight to each attribute. This means that if the

data is not normalised, the clustering assigns the same weight, for example, to one

meter of cable length as to one kW installed capacity of wind generation plants. In

order to normalise the data, z-scores are calculated from the expected value E(x) and

the sample variance Var(x) of attribute x:

z =
x− E(x)

Var(x)
(5.5)
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5.2 Regression trees

Regression trees are based on the recursive partitioning of a sample. They are especially

useful to detect non-linear effects and interactions between variables. Furthermore,

regression trees are well suited for the analysis of data with many variables because

they automatise the process of variable selection (Varian, 2014). If the dependent

variable data is non-continuous and unordered, regression trees are referred to as

classification trees (James et al., 2017, chap. 8).

Partitions of a tree are sometimes also referred to as nodes. A distinction can then be

made between internal nodes and terminal nodes. Internal nodes are parents of other

nodes. Terminal nodes do not have any children nodes and are also referred to as

leaves.

Regression trees can be constructed using one of several algorithms that differ with

respect to the splitting rule and the prediction model (Loh, 2011). For example,

some algorithms conduct statistical test to pre-select some variables when partitioning

the sample, whereas other algorithms consider all variables for splitting the sample.

Furthermore, while some algorithms fit linear or quadratic models to the observations

within one leaf, other algorithms use the mean value of observations as estimate of

the leaf (Loh, 2011). There also exist algorithms based on likelihood and Bayesian

estimation as well as for logistic and Poisson regression (Loh, 2011).

In this thesis only the CART (Classification And Regression Tree) algorithm is used.

The CART algorithm is one of the most popular and widely used algorithms (Hastie

et al., 2009). The algorithm is usually attributed to Breiman et al. (1984). The algorithm

considers all possible split candidates when partitioning the sample and uses the mean

value of observations as estimate of the leaf.

The mathematical representation of a tree built with the CART algorithm is relatively

simple. The tree can be represented by K partitions of the sample R1, ..., R� . With the

independent variable X , and the dependent variable y the tree can be written as:

y(X) =

�︁

�=1

c�I� (X) (5.6)
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where I�(.) is an indicator function (Hastie et al., 2009):

I�(X) =

⎧

⎨

⎩

1 if X ∈ R�

0 otherwise
(5.7)

For estimating the tree based on observations i = 1, ..., N , the constants c� can be set to

the arithmetic mean of all observations (y�, X�) with p covariates X� = (x�1, x�2, ..., x��)

falling into the corresponding region R�:

ĉ� =
1

︀�
�=1 I� (X�)

�︁

�=1

y�I� (X�) (5.8)

The estimated tree can then be written as:

ŷ(X) =

�︁

�=1

ĉ�I� (X) (5.9)

The CART algorithm constructs trees as follows: for each terminal node and for

each of the j = 1, ...., p covariates (attributes), the algorithm considers all possible

split-points s of the interval s ∈ (min�{x��},max�{x��}) with some step-size ∆s.

For each split point, the algorithm first computes the predicted value (typically the

arithmetic mean) and second some measure of the quality of a cluster model (typically

the mean-squared-error) for each of the two potential children nodes. The algorithm

then chooses the split that yields the best fit in the two children nodes. The children

nodes are then added as new terminal nodes. The algorithm typically continues

splitting terminal nodes until a stopping criterion is met.

This criterion determines the complexity of a tree, typically measured by the number

of terminal nodes. The criterion can be based, for example, on the minimum number of

observations in a terminal node or on the improvement of the fit of the tree stemming

from a potential additional split (Hastie et al., 2009). In this thesis, the number of leafs

is specified and equal to the number of clusters.

The result of a regression tree is an assignment of observations to leafs. These leafs can

be considered as clusters. For each cluster k, the observation whose value of y is closest

to the mean value of all observations in the same cluster is considered as representative
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observation of that cluster. With the costs of the representative observation of cluster k

as ỹ� one can write:

ỹ� = argmin
�i|�(�)=�

(y� − y�)
2 (5.10)

whereby y� is the arithmetic mean of y� of all observations i for which C(i) = k.

5.3 Metrics for evaluation of cluster models

The result of a cluster model can be evaluated in different ways. In this thesis, two

metrics that describe the performance of a cluster model are used. The first metric

describes the average distance in terms of y between observations of the same cluster.

This metric is in the following referred to as the within-cluster dispersion of costs and

denoted as W :

W =
1

N

�︁

�=1

1
︁

︀�
�=1

︀�
�=1 I� (X�) I� (X�)

︁

− 1

�︁

�=1

�︁

�=1

|y�−y� |·I� (X�) I� (X�) . (5.11)

In Equation (5.11), ỹ� is the value of the independent variable of the representative

observation of cluster k (determined by Equation (5.4) for K-Mean and by Equation

(5.10) for regression trees).

The second metric describes the relative deviation of estimated total costs from

calculated total costs if a certain cluster model is used to estimate total costs. This

metric is sometimes in the following referred to as the relative deviation of total costs

and denoted as R:

R =

⃒

⃒

⃒

⃒

⃒

�︁

�=1

�︁

�=1

ỹ�I� (X�)−

�︁

�=1

y�

⃒

⃒

⃒

⃒

⃒

/

�︁

�=1

y� (5.12)

In sum, R is a metric based on the distance of observations from the representative

observation of their cluster whereas W is based on the average difference of costs for

observations of the same cluster. In consequence, R is sensitive to the choice of the
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representative observations whereas R is not. Both W and R are used in the analysis

of the results in Chapter 6. The differences between W and R are also illustrated in the

following in Section 5.4.

5.4 Simple example

In Section 5.1 and Section 5.2, two methods to estimate cluster models were described,

K-Mean and regression trees respectively. In the following a simple example is

developed that illustrates the two methods and some differences between them. For

this purpose, a dataset is generated with an independent variable y, two attributes

X = (X1, X2) and N = 100. In this example, the association between X1 and y is much

weaker than the association between X2 and y. Furthermore, the relationship between

X2 and y is non-linear (Figure 12).
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Figure 12: Scatter plot of attributes (X1, X2) and dependent variable (y) for simple example with
two attributes: (a) X1 and y and (b) X2 and y.

For this dataset, a cluster model with the two attributes X1 and X2 is estimated using

K-Mean and a regression tree. The number of clusters K = 4. The results of the

cluster estimation are shown in Figure 13. The assignment of observations to clusters is

indicated by symbols. Furthermore, the representative observations as determined by

Equation (5.4) and Equation (5.10) are marked with X.

When assigning observations to clusters, K-Mean assigns equal weight to each attribute

and does not take y into account (Section 5.2). In Figure 13(a), each of the 4 clusters

therefore covers one of the four corners of the two-dimensional space. By contrast, the
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Figure 13: Clusters and representative observations for simple example with two attributes and
K = 4 for (a) K-Mean and (b) regression tree estimation. Clusters are indicated by
symbols, values of y are indicated by colour, and representative observations are
marked with X.

regression tree also considers the association between attributes and y when assigning

observations to clusters. In Figure 13(b), the two-dimensional space is hence partitioned

in three segments with respect to X2 and in at most two segments with respect to X1.

In addition, while K-Mean uses the observation closest to the geometric centroid as

representative observation, the regression tree uses the observation with the value of

y closest to the arithmetic mean of y within the cluster as representative observation.

Figure 13 reveals that in this example the observation closest to the mean value of y is

often located at the boundary of the cluster.

One consequence of the different partitioning of the two-dimensional space is that

observations are more similar with respect to y within clusters for the clusters estimated

with a regression tree than for the clusters estimated with K-Mean. This is also

indicated by the values of the metrics W and R shown in Figure 13. Both the

within-cluster dispersion of costs W and the relative deviation of estimated total costs

from calculated total costs R are larger for the clusters estimated with K-Mean than for

the clusters estimated with a regression tree.

The results of the same analysis with K = 6 are shown in Figure 14. As K increases

from 4 to 6, the clusters estimated by K-Mean become smaller. For the assignment of

observations to the new clusters, both attributes X1 and X2 carry the same weight.

By contrast, as K increases to 6 the regression tree partitions the (X1, X2) space with

additional segments in the direction of X2. As indicated by the colour of symbols
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in Figure 14, this means that observations of the same cluster feature generally more

similar costs than for the clusters estimated with K-Mean. The lower values of W

and R for regression tree than for K-Mean estimation confirm this result from visual

inspection.
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Figure 14: Clusters and representative observations for simple example with two attributes and
K = 6 for (a) K-Mean and (b) regression tree estimation. Clusters are indicated by
symbols, values of y are indicated by colour, and representative observations are
marked with X.

In sum, the simple example illustrates how K-Mean and regression tree estimation

assign observations to clusters and identify representative observations. In both steps,

regression tree estimation takes the dependent variable y, in the remainder of this

thesis the costs of network expansion for the worst-case scenario, into account whereas

K-Mean does not. As a result, the clusters estimated with regression trees generally

feature lower values of the metrics W and R and therefore tend to perform better. In

this example, however, regression trees were trained with one dataset and then applied

to the same dataset. In general, two different datasets or two different samples of the

same dataset are used for training and applying a regression tree. In order to evaluate

the performance of K-Mean and regression tree for an alternative scenario, in Chapter 6

both methods are applied to both the worst-case and the curtailment scenario. Because

the computation of the costs of network expansion requires less computation for the

worst-case scenario than for other scenarios, the worst-case scenario is generally used

to train regression trees.
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This Chapter contains results of the cluster analysis. The Chapter is structured as

follows. First, the average effect of including an attribute on the within-cluster

dispersion of costs W (Section 5.3) of a cluster model is investigated. To this aim, cluster

models that exclude the attribute are compared with models that include it (Section 6.1).

Second, all cluster models are ranked according to W . This ranking is used to identify

and examine the ten cluster models with the lowest value of W (Section 6.2).

Based on the results of these two steps of the analysis and the theoretical framework

of network attributes (Chapter 4), 57 cluster models are selected. These cluster models

are then assessed in terms of both the within-cluster dispersion of costs W and the

relative deviation of estimated total costs from calculated total costs R (Section 5.3)

for the worst-case scenario (Section 6.3) and the curtailment scenario (Section 6.4).

Furthermore, some selected cluster model are analysed and compared in more detail

(Section 6.5).

Finally, for three selected cluster models the resulting clusters themselves are analysed

in more detail. For this, the representative networks of each cluster are identified

and their coordinates in terms of network attributes are analysed. Furthermore,

geographical maps of the occurrence of clusters are drawn and examined (Section 6.6).

Throughout this Chapter, all steps of the analysis are done in parallel for both K-Mean

and regression tree cluster estimation and all results are analysed regarding differences

between the two methods.

6.1 Effect of attributes on within-cluster dispersion of costs

In order to conduct a cluster analysis, one first needs to choose a combination of

attributes. Each of these attributes is then potentially used to assign observations to

clusters. Regression trees consider each of the attributes and split the sample based

on those attributes that improve the cluster model with respect to the target variable y
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the strongest (Section 5.2). By contrast, K-mean assigns observations to clusters based

on their distance from cluster centres. For the calculation of distances, each attribute

carries equal weight. This means that for regression tree estimation a cluster model

with more attributes yields at least the same performance (in terms of e.g. W , R) as a

cluster model that includes only a subset of the same attributes. In the case of K-Mean

a larger number of attributes does not necessarily yield a better cluster model (Section

5.1).

In order to account for interactions between attributes, in the following the average

effect of including an attribute in a cluster model with other attributes on the

performance of that cluster model is examined. For this purpose, the performance of

a cluster model is assessed in terms of the within-cluster dispersion of costs W . The

reason is that W does not account for differences between K-Mean and regression tree

cluster estimation in how these methods choose representative networks (Section 5.3).

In order to compute the average effect of including an attribute in a cluster model,

all possible cluster models with a certain number of attributes were estimated. Then,

for each attribute A two cluster models are identified and compared: the performance

of model with n-1 attributes excluding A and the performance of the corresponding

models with the same n-1 attributes plus A. For these models, the difference ∆W�,� =

W�,�
� −W�,�

�−1 is calculated. This is done for all possible models with n-1 attributes that

exclude A. From the results, the average effect ∆W� = 1
�

︀�
�=1∆W�,� is calculated.

The results show that the order of importance of the 14 network attributes according

to ∆W� is generally similar for K-Mean and regression tree estimation (Figure 15).

For the six attributes with the strongest effect on W , the order is indeed exactly the

same for both estimation methods (in decreasing order of importance): WIND-2035,

WIND-2015, IMAX-MV, SOLAR-2035, LENGTH-MV, and SOLAR-2015 (Figure 15).

In Figure 15(a) the result for n = 3 and K = 100 is shown. In general, the larger the

number of included attributes n the more effects from interactions between variables

are included in the calculation of ∆W�. To quantify this effect, Figure 15(b) shows the

the results of the same computations but with n = 5. For K-Mean, fewer attributes tend

to reduce W for n = 5 than for n = 2. This confirms that including more attributes does

not necessarily improve the performance of a cluster model that is estimated using

K-Mean. Furthermore, the marginal effect is for all attributes smaller for n = 5 than
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for n = 2. That is also the case for regression tree estimation. However, the order of

importance of the 14 network attributes does not change with n, neither for K-Mean

nor for regression tree estimation.
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Figure 15: Effect of including an attribute in cluster models with (a) n = 2 and (b) n = 5 on

within-cluster dispersion of costs, as measured by ∆WA (see text).

The average effect of including an attribute in a cluster model ∆W� takes interaction

effects of several attributes into account. An alternative metric to quantify the potential

effect of including attributes in a cluster model are correlation coefficients between

attributes and y. One can generally assume that the larger the correlation coefficient,

the more the attribute tends to improve existing cluster models. Correlation coefficients

neglect however interactions between attributes.

Pearson correlation coefficients between network attributes and y are shown in Figure

16. Overall, the order of relative importance differs for many pairs of attributes between

the result for ∆W� and the correlation coefficients. Furthermore, attributes which on

average have a negative effect on W of a cluster model if they are included in the

cluster model and if the cluster model is estimated with K-Mean feature correlation

coefficients comparable to the correlation coefficients of attributes with a positive effect

on W . Overall, the results thus suggest that correlation coefficients are not suitable for

identifying those attributes which improve the performance of existing cluster models
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the most.
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Figure 16: Pearson correlation coefficients between network attributes and costs of network
expansion for worst-case scenario.

6.2 Ranking of cluster models

The results of the previous Section indicate which network attributes improve the

performance of a cluster model the strongest if they are included in that model.

However, the results do not reveal which are the best cluster models, which here refers

to the combinations of attributes that perform best according to W .

For this purpose, all cluster models with n = 2, 3, ..., 6 and K = 100 were estimated.

The ten cluster models with the lowest value of W are shown in Figure 17. The result

reveals that some attributes appear in more than one of the ten best combinations.

If one ranks attributes according to their occurrence in these combinations, the order

of the top six attributes is: WIND-2035, SOLAR-2035, WIND-2015 and SOLAR-2015,

IMAX-MV, IMPEDANCE for K-Mean and WIND-2035 and WIND-2015 and IMAX-MV,

SOLAR-2015 and IMPEDANCE, LOAD for regression trees (Figure 17).

These are almost the same attributes as the attributes with the largest average effect on

W in Section 6.1. The only difference is that in the best cluster models, LOAD replaces

LENGTH-MV. In this analysis, only the ten best performing cluster models according

to W were analysed. The reason is that only a limited number of cluster models can be
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Figure 17: The ten best cluster models with K = 100 according to W for (a) K-Mean and (b)
regression tree estimation.

analysed at this level of detail. For this thesis, those cluster models are considered most

relevant that yield the best performance.

Figure 18 shows how the performance of cluster models as indicated by W declines

if more cluster models are considered. Overall, W increases with a decreasing slope.

From the first to the tenth cluster model, W increases most strongly. From there on, the

slope declines more gradually. This can be regarded as support for the decision to focus

on the top ten cluster models.
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Figure 18: Within-cluster dispersion of costs W for 100 best cluster model with K = 100
according to W for (a) K-Mean and (b) regression tree estimation.

Moreover, the results in Figure 18 show that for regression trees, the performance of

models is largest if all possible attributes are included. This is because regression trees

consider only those variables that improve the performance of the cluster model when
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building the model. All other variables are neglected. In contrast to this, for K-Mean

clustering all attributes carry equal weight for assigning observations to clusters. The

optimal number of attributes is hence smaller than for regression trees. The results

indicate that cluster models with 3 or 4 attributes have the lowest value of W (Figure

18).

This raises the question whether starting with the optimal cluster model for a certain

value of n and then increasing n stepwise by including additional attributes can yield

the optimal cluster model of attributes for subsequent values of n. The optimal cluster

models for n = 2, 3, 4, 5, 6 and K = 100 are shown in Figure 19. The results give a

mixed picture. For K-Mean estimation, the best cluster model of all n ≤ 5 can indeed

be obtained by adding one attribute to the best cluster model for n − 1. For n = 6, the

attributes of the best cluster model change. For regression trees, there is two exceptions

for n = 3 and n = 4. Apart from these two exceptions, the best cluster model can be

obtained by adding one attribute to the best cluster with n− 1 attributes.
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Figure 19: The best cluster model with K = 100 and n = 2, 3, ..., 6 according to W for (a) K-Mean
and (b) regression tree estimation.

For the further analysis, a set of cluster models needs to be selected. Based

on the theoretical considerations in Section 6.1 and the previous results, these

combinations are mostly made up of the following network attributes: WIND-2035,

WIND-2015, SOLAR-2035, SOLAR-2015, IMAX-MV, IMPEDANCE, LOAD, and

LENGTH-MV. These are the attributes with the strongest average effect on W (Section

6.1). Furthermore, interactions that provide a plausible model for expansion costs

according to the considerations in Section 6.1 are included. For example, the mean

impedance (IMPEDANCE) is for some models combined with the number of branches

NLINES-MV and NLINES-LV. Also the combination used in dena (2012) is further
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considered. Furthermore, the combination of all 14 attributes is included in the analysis.

An overview over all 57 selected cluster models and the labels used to refer to them is

given in Figure 35 (Appendix).

6.3 Evaluation of cluster models for worst-case scenario

A heuristic method to estimate total costs consists of drawing a random sample of

networks with size K, computing expansion costs for these networks, and aggregating

these costs by assuming that each of the networks in the sample is representative for 1
�

of all networks. This heuristic method is in the following used as to derive a benchmark

for the relative deviation of estimated costs from cluster models R (Section 5.3).

In order to compute this benchmark, for each value of K 10,000 random samples of

size K are drawn. For each of these samples, the total costs are estimated by a simple

aggregation in which each network in the sample is assigned equal weight. From

these 10,000 estimates, the mean value of the relative deviation R is shown in Figure

20. Furthermore, the 25 percentile and the 75 percentile of the relative deviations are

shown.
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Figure 20: Relative deviation of estimated total costs from total costs (R in Equation 5.12)
for a random selection of K networks. Black line indicates arithmetic mean from
10,000 random samples of size K, grey shaded area ranges from 25 percentile to 75
percentile. (a) Worst-case scenario (SCEN1) and (b) curtailment scenario (SCEN2).

This benchmark is used to filter the 57 selected cluster models. Each cluster model

is only included in the following analysis if for all K it performs better in terms of
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the relative deviation then the mean relative deviation of the random samples. This

reduces the selected 57 cluster models to 32 cluster models.
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Figure 21: Relative deviation of estimated total costs from total costs for 32 cluster models
and different number of clusters K for the worst-case scenario and (a) K-Mean and
(b) regression tree estimation. The black dashed line indicates the mean relative
deviation for random samples of size K (see Figure 20).

For each of the remaining 32 cluster models, the relative deviation R is computed

for K = 5, 10, 20, 50, 100, 150, 200, 300 (Figure 21). The results reveal that for K-Mean

estimation, the relative deviation of estimated total costs from calculated total costs

tends to decrease as K increases. For regression tree estimation, the relative deviations

are generally lower by about one order of magnitude than for K-Mean estimation.

This can be explained as follows. For K-Mean estimation, the network closest to the

geometric centre of the cluster is considered as representative. For regression tree

estimation, the network with costs closest to the mean value of the costs of all networks

in the cluster is considered representative (Section 5.1 and Section 5.2). This implies

that the total costs of a cluster are estimated by multiplying a value close to the mean

value of the costs of the cluster by the number of networks in the cluster. If the mean

value of the costs coincides with one of the networks of the cluster, the estimate of
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total costs will therefore coincide with the calculated total costs. Most of the difference

between K-Mean and regression trees shown in Figure 21 can therefore be attributed to

the method by which the representative networks are selected.

For regression tree estimation, the relative deviation is relatively constant with K. In

contrast to the results for K-Mean estimation, there is no clear decreasing trend of the

relative deviations as K increases. Two mechanisms with opposite effect may affect

the results here. First, a larger value of K means that clusters tends to consist of fewer

networks. This means that the probability that the costs of the network with costs

closest to the mean value of costs and the actual mean value coincide decreases. At

the same time, the larger number of clusters means that costs within one cluster tend

to become more similar because the tree can partition the sample into more segments

based on differences in costs.

The changes of W with K for the remaining 32 cluster models are shown in Figure

22. For all models, W declines with K. The slope of the curve is generally steeper

for smaller values of K. Furthermore, the level of W of a model is generally lower

for regression trees than for K-Mean clustering. In other words, observations of the

same cluster of a model that was estimated as a regression tree tend to be more similar

with respect to costs than observations of the same cluster of that model estimated with

K-Mean.

Based on the assessment of W four models stand out because of their relatively large

value of W as compared to all other cluster models. Furthermore, the value of W of

these models is relatively large for both K-Mean and regression tree estimation (Figure

22). These are the models that account for the installed generation capacity of solar

photovoltaic but not of onshore wind power plants (SS and S35II). Because of their

substantially larger value of W , these four models are also excluded in the following,

which results in 28 remaining cluster models.

6.4 Evaluation of cluster models for curtailment scenario

One of the main advantages of estimating a cluster model as compared to the estimation

of a prediction model is that once the representative observations have been identified,

they can be used for any future computation and estimation. The total costs can then be

45



6. RESULTS

(a)

0 50 100 150 200 250 300
k

1200

1400

1600

1800

2000

2200

2400

2600

2800

W
(k

E
U

R
)

SCEN1KM

DENA

WSII

WS35

WS35II

WS15

WS15II

WS35P

WS35U

WS35T

WS35UT

WS35L

WS35S

W35II

W35P

W35S

W35PS

W35U

W35UL

W35T

W35UT

W35UTL

W35PUTL

WWS

WWPS

WWU

WWUL

WWT

WWUT

WWUTL

WWPUTL

SSTL

SSUT

(b)

0 50 100 150 200 250 300
k

0

500

1000

1500

2000

2500

3000

W
(k

E
U

R
)

SCEN1RT

DENA

WSII

WS35

WS35II

WS15

WS15II

WS35P

WS35U

WS35T

WS35UT

WS35L

WS35S

W35II

W35P

W35S

W35PS

W35U

W35UL

W35T

W35UT

W35UTL

W35PUTL

WWS

WWPS

WWU

WWUL

WWT

WWUT

WWUTL

WWPUTL

SSTL

SSUT

Figure 22: Within-cluster dispersion of costs for 32 cluster models and different number of
clusters K for the worst-case scenario and (a) K-Mean and (b) regression tree
estimation.

estimated with a simple multiplication of the costs with the size of the corresponding

cluster. This means that no additional model on the relationship between attributes

and costs of network expansion needs to be estimated. In the context of this thesis,

for example, one can use the representative networks to estimate total costs of network

expansion for scenarios with different flexibility options. This can be achieved, for

example, by applying a power flow model to each of the representative networks.

With a prediction model, one can likewise apply the power flow model to a sample

of networks. However, on would then need to estimate a new model for the association

between network attributes and expansion costs for each of the scenarios.

The results in Section 6.3 indicate that an estimation of clusters using regression trees

can yield a better estimate of total costs than an estimation using K-Mean. The clusters

of the regression tree estimation were however identified using costs of the worst-case

scenario. For this reason, the performance of cluster models estimated with regression

trees may be more specific to this scenario than the performance of cluster models
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estimated with K-Mean. In order to test the robustness of the relative performance

of cluster models estimated with these two alternative methods, the cluster models are

applied to the second scenario of costs of network expansion, the curtailment scenario

(Section 3.4). For this step, the representative networks are the same as estimated for

the worst-case scenario but expansion costs are replaced by the costs computed for the

curtailment scenario.
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Figure 23: Relative deviation of estimated total costs from total costs for 28 cluster models and
different number of clusters K for the curtailment scenario and (a) K-Mean and
(b) regression tree estimation. The black dashed line indicates the mean relative
deviation for random samples of size K (see Figure 20).

The results for the curtailment scenario are shown in Figure 24. The results are

qualitatively similar to the results for the worst-case scenario (Figure 22). The costs are

generally lower for the curtailment scenario, which is reflected in the generally lower

value of W . As for the worst-case scenario, the regression tree estimation yields cluster

models with a lower value of W than the K-Mean estimation.

The relative deviation of the estimated total costs from the calculated total costs R is

shown in Figure 23. All cluster models yield a similar relative deviation for K-Mean
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estimation as for regression tree estimation. The cluster models estimated using

regression trees still perform slightly better with respect to R than the cluster models

estimated using K-Mean but the differences between the two methods are much smaller

than for the worst-case scenario. In general, the relative deviation of cluster models

estimated using K-Mean is similar for both scenarios (Figure 21 and Figure 23). In

contrast to this, the relative deviation of cluster models estimated using regression

trees is much larger for the curtailment scenario than for the worst-case scenario. This

supports the hypothesis that the cluster models estimated using regression trees are

generally more specific to the worst-case scenario than the cluster models estimated

using K-Mean.
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Figure 24: Within-cluster dispersion of costs for 28 cluster models and different number of
clusters K for the curtailment scenario and (a) K-Mean and (b) regression tree
estimation.

6.5 Evaluation of selected cluster models

The results in Section 6.3 and Section 6.4 reveal that cluster models estimated with

K-Mean can be better compared in terms of W than in terms of R. The reasons is that

W is not sensitive to the choice of the representative networks. 48
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The cluster models selected for the analysis in this Section are hence assessed only

in terms of W . Furthermore, only the results from K-Mean estimation are examined

here. One reason for this is that the performance of cluster models generally features

a stronger variation for K-Mean than for regression tree estimation. Furthermore,

previous studies relied on K-Mean as cluster estimation method which provides an

additional motivation to keep and attempt to improve the same estimation method.
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Figure 25: Within-cluster dispersion of costs for twelve selected cluster models and different
number of clusters K using K-Mean cluster estimation for the (a) worst-case scenario
and (b) curtailment scenario.

The values of W for selected cluster models and the two scenarios SCEN1 and SCEN2

are shown in Figure 25. There are several new insights that can be derived from this

comparison of cluster models. First, for K > 100 the cluster model with the lowest

within-cluster dispersion of costs W is WWT for both scenarios of network expansion

costs. This cluster model includes four network attributes: WIND-2035, WIND-2015,

IMAX-MV, and NLINES-MV. Second, this cluster model has a lower W than alternative

cluster models that include additional attributes (WWTL, WWUT, WWUTL). Third, for

K ≤ 100 other cluster models that include WIND-2035 but not WIND-2015 have a

lower value of W (e.g. W35T). This is the case for both scenarios.

The sensitivity of the relative performance of cluster models to the value of K is further

examined in Figure 26. There, also cluster models that include both installed generation

capacities of wind and photovoltaic are included. As before, WWT has the lowest value
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of W for large K, in this case for K > 150. However, for K < 200 cluster models that

include both WIND-2035 and SOLAR-2035 perform better. Among these models is the

model DENA that includes WIND-2015, WIND-2035, SOLAR-2015 and SOLAR-2035

(Figure 26).
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Figure 26: Within-cluster dispersion of costs for eight selected cluster models and different
number of clusters K using K-Mean cluster estimation for the (a) worst-case scenario
and (b) curtailment scenario.

In sum, for relatively low values of K (K ≤ 100) cluster models including only the

installed generation capacity in 2035 of both onshore wind and solar photovoltaic

power plants perform best. For relatively large values of K, cluster models that

include WIND-2015 and WIND-2035 tend to perform better. This is especially the case

for the cluster model WWT which includes WIND-2015, WIND-2035, IMAX-MV and

NLINES-MV. Furthermore, the model DENA is among those models performing best,

especially for relatively low values of K.

6.6 Detailed analysis of two cluster models

In Section 6.5 the cluster model WWT performed relatively well with respect to both

metrics W and R for several values of K. This cluster model is therefore analysed

in more detail in the following. To this aim, the cluster model WWT with K = 10

is applied to the worst-case scenario and the ten clusters are analysed based on their
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representative network. Furthermore, because the cluster model DENA has been used

in previous studies and also tends to perform relatively well according to the results

of the previous Sections, it is also applied to the worst-case scenario and the resulting

clusters are also analysed.

The representative networks of the cluster model DENA estimated with K-Mean and

with a regression tree are shown in Table 4 and Table 5, respectively. For each

representative network, the coordinates in terms of the attributes of the cluster model

DENA are given. Furthermore, the additional future installed capacity for onshore

wind (∆ WIND) and solar photovoltaic (∆ SOLAR) are calculated and shown. In

addition, the costs of network expansion and the size of the clusters are given.

Table 4: Representative networks of the cluster model DENA estimated with K-Mean and
K=10. ∆WIND = WIND-2035 - WIND-2015, ∆SOLAR = SOLAR-2035 - SOLAR-2015.
nk refers to the size of the corresponding cluster. Costs refer to the costs of network
expansion for the worst-case scenario. See Table 3 for units of the attributes. W = 1870,
R = 0.15.

k WIND
-2015

WIND
-2035

SOLAR
-2015

SOLAR
-2035

∆ WIND ∆ SOLAR Costs nk

1 1502 2748 8428 14158 1246 5730 529 656
2 19251 58453 26115 40739 39202 14624 5151 102
3 2617 5217 38570 50094 2600 11524 465 162
4 4 8 83797 106009 4 22212 4788 33
5 32696 68669 9601 14019 35973 4418 18103 130
6 62396 122351 86935 97299 59955 10364 15474 10
7 1809 3618 20450 26676 1809 6226 423 386
8 12000 30000 6206 11408 18000 5202 788 314
9 62700 123687 13335 19792 60987 6457 12968 51
10 750 1282 2141 2969 532 828 172 1084

For K-Mean, there are three clusters for which the costs of the representative network

are larger than 10,000,000 EUR (k = 5, 6, 9). They represent together 6.5% of all

networks. The three representative networks all feature ∆WIND > 35 MW. If one

compares these and the other representative networks in more detail, Table 4 also

reveals a potential weakness of the cluster model DENA. The representative network

of the cluster k = 2 features a larger ∆WIND and a larger ∆SOLAR than the

representative network of the cluster k = 5. At the same time, its costs of network

expansion are lower. This indicates that there are other network attributes which have

a relatively strong influence on costs but are not taken into account by the cluster model

DENA.

51



6. RESULTS

If one compares the results for K-Mean (Table 4) and regression tree estimation (Table

5), one can see that the regression tree identifies two relatively small clusters (k = 1, 2)

whose representative networks feature relatively large costs. These two representative

networks also feature relatively large ∆WIND. At the same time, two relatively large

clusters (k = 5, 6) feature relatively low costs and their representative networks feature

no additional wind power plants (∆WIND = 0). These representative networks are

more extreme with respect to costs and ∆WIND than the most extreme representative

networks for K-Mean estimation. The identification and clustering of networks with

relatively extreme costs can be considered one of the strengths of regression tree

estimation as compared to K-Mean. Overall, the regression tree estimation of this

example yields a lower within-cluster dispersion of costs W and a lower relative

deviation of estimated total costs R than the K-Mean estimation (see caption of Table 4

and 5).

Table 5: Representative networks of the cluster model DENA estimated with a regression
tree and K=10. ∆WIND = WIND-2035 - WIND-2015, ∆SOLAR = SOLAR-2035 -
SOLAR-2015. nk refers to the size of the corresponding cluster. Costs refer to the costs
of network expansion for the worst-case scenario. See Table 3 for units of the attributes.
W = 1557, R = 0.0067.

k WIND
-2015

WIND
-2035

SOLAR
-2015

SOLAR
-2035

∆ WIND ∆ SOLAR Costs nk

1 4500 124698 38449 54535 120198 16086 40091 2
2 67750 184693 24121 28197 116943 4076 20849 21
3 0 43200 4731 33551 43200 28820 11556 35
4 17100 49266 4903 8627 32166 3724 7127 181
5 0 0 7629 9738 0 2109 256 1540
6 0 0 20093 37939 0 17846 1195 695
7 3000 26500 7727 10630 23500 2903 3161 286
8 8100 14850 18450 32838 6750 14388 5460 102
9 19425 88320 14228 17805 68895 3577 16883 27
10 42250 94500 18931 27879 52250 8948 11007 39

Figure 27 shows the geographic distribution of the ten clusters from the K-Mean and

the regression tree cluster estimation. There are no clear spatial patterns that can be

recognised. Overall, few clusters dominate because of their larger cluster size, as also

shown in Table and Table .

The representative networks of the model WWT estimated with K-Mean and their

coordinates are shown in Table 6. From these coordinates, also the additional future

installed capacity for onshore wind (∆WIND) is calculated and shown. The result
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(a) (b)

Figure 27: Geographical map of the distribution of clusters for the cluster model DENA with
K = 10 using (a) K-Mean and (b) regression tree estimation.

illustrates one reason why the WWT cluster model tends to perform better than

most cluster models that do not include network attributes describing thermal and

voltage limits (Section 6.3). For example, the representative network of the cluster

k = 7 features the largest ∆WIND of all representative networks. Its cost of network

expansion are however smaller than the costs of four of the other representative

networks (k = 2, 3, 8, 9). The attribute IMAX-MV indicates one potential reason for

this as the representative network of the cluster k = 7 features a larger IMAX-MV than

each of the four other representative networks.

Table 6: Representative networks of the cluster model WWT estimated with K-Mean and K=10.
∆WIND = WIND-2035 - WIND-2015. nk refers to the size of the corresponding cluster.
Costs refer to the costs of network expansion for the worst-case scenario. See Table 3
for units of the attributes. W = 1957, R = 0.32.

k WIND
-2015

WIND
-2035

IMAX
-MV

NLINES
-MV

∆WIND Costs nk

1 1850 3700 382 9 1850 523 498
2 39400 86824 452 10 47424 10646 76
3 16800 36000 429 8 19200 5123 198
4 800 800 371 4 0 33 1135
5 2000 4000 518 5 2000 761 307
6 1300 1950 257 8 650 795 372
7 85304 161396 461 15 76092 4754 16
8 22960 65950 375 15 42989 5571 120
9 43380 83032 387 29 39652 8060 29
10 850 4250 342 15 3400 1682 177
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The representative networks of the cluster model WWT estimated with a regression

tree are shown in Table 7. As expected from Section 6.3, the cluster model WWT

performs bettern in terms of both the within-cluster dispersion of costs W and the

relative deviation of estimated total costs R it if is estimated with a regression tree

than if it is estimated with K-Mean (see caption of Table 6 and 7). Furthermore, similar

to the results for the model DENA the regression tree identifies two relatively small

clusters (k = 2, 5) with relatively large costs and one relatively large cluster (k = 7) with

relatively low costs. These clusters are more extreme than the most extreme clusters of

the estimation with K-Mean in terms of costs (Table 6 and Table 7). This difference

between K-Mean estimation and regression tree estimation is also similar to the result

for the cluster model DENA discussed above.

Table 7: Representative networks of the cluster model WWT estimated with a regression
tree and K=10. ∆WIND = WIND-2035 - WIND-2015. nk refers to the size of the
corresponding cluster. Costs refer to the costs of network expansion for the worst-case
scenario. See Table 3 for units of the attributes. W = 1580, R = 0.0063.

k WIND
-2015

WIND
-2035

IMAX
-MV

NLINES
-MV

∆WIND Costs nk

1 7870 40735 210 8 32865 3747 388
2 4500 124698 389 19 120198 40091 2
3 67750 184693 444 11 116943 20849 21
4 67140 125905 438 14 58765 12937 64
5 35620 120602 608 13 84982 42535 2
6 17100 49266 267 12 32166 7127 181
7 1025 1025 274 15 0 340 1865
8 6100 12199 422 7 6099 1576 370
9 850 54604 357 4 53754 8841 24
10 4100 44348 421 6 40248 16013 11

Figure 28 shows the geographic distribution of the ten clusters of the cluster model

WWT. Similar to the results of the model DENA shown in Figure 27, the geographical

distribution of the clusters does not follow any clear spatial patterns. For the results

from both estimation methods, few relatively large clusters dominate. Furthermore, as

illustration of the use of regression trees as cluster estimation method and to further

visualise differences between the cluster models DENA and WWT, the regression trees

of the two cluster models are shown in Figure 33 (Appendix) and Figure 34 (Appendix),

respectively.
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(a) (b)

Figure 28: Geographical map of the distribution of clusters for the cluster model WWT with
K = 10 estimated with (a) K-Mean and (b) a regression tree.
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7. Discussion

In this Chapter, the results shown in the previous Chapters are discussed. Furthermore,

some of the strengths and weaknesses of the dataset used in this thesis are addressed.

In order to examine and discuss the quality of the dataset of synthetic networks, first

the total costs of network expansion of the synthetic networks are compared with the

total costs that were estimated in previous studies (Section 7.1). Then, the selected

14 network attributes and their relative importance are discussed in light of previous

studies (Section 7.2). Next, the relative performance of the K-Mean and the regression

tree method is discussed (Section 7.3). Finally, the performance of the cluster model

used by previous studies relative to the performance of alternative cluster models is

discussed (Section 7.4).

7.1 Data on distribution networks

The costs for expanding distribution networks were estimated from a dataset of

synthetic networks. This dataset was constructed as part of an ongoing research

project at the Reiner-Lemoine-Institut Berlin and used in this thesis because there is no

complete dataset of real electricity distribution networks in Germany. Previously, the

costs of network expansion were estimated from samples of real distribution networks

(dena, 2012; BMWi, 2014). While the synthetic networks allowed the author to examine

alternative cluster models and cluster methods in more detail than samples of real

networks would have allowed because of the much larger size of the dataset, the use

of a synthetic dataset introduces some uncertainty about the accuracy of the costs of

network expansion.

One way to assess the accuracy of these costs is to compare the total costs with the

total costs that were estimated in previous studies. For this thesis the costs of network

expansion were calculated for two scenarios, one worst-case scenario and one scenario

with curtailment. Table 8 shows the total costs for these two scenarios and the total

costs estimated in dena (2012) and in BMWi (2014). Because these previous studies
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assumed different future installed capacities of onshore wind and solar photovoltaic

power plants, the total costs are divided by the total installed capacity of these two

technologies. Furthermore, the share of the total costs on the MV level of the total costs

at both the MV and the LV level is calculated (Table 8).

Table 8: Total costs of network expansion of worst-case scenario (SCEN1) and curtailment
scenario (SCEN2) and of two previous studies: BMWi (BMWi, 2014) and DENA
(dena, 2012). Additional installed generation capacity of onshore wind (∆ W), solar
photovoltaic (∆ PV), and other renewable energy technologies (∆ EE). Total costs
denoted as TC and divided by sum of installed generation capacity of onshore wind
and solar photovoltaic (TC per GW). Share of total costs on medium-voltage level of
total costs on both medium-voltage and low-voltage level (Share MV).

Source Year 1 Year 2 ∆ W
[GW]

∆ PV
[GW]

∆ EE
[GW]

TC [G
EUR]

TC per
GW

Share
MV

DENA 2010 2030 34.3 44.9 3 11.4 0.14 0.68
BMWi 2012 2032 34.3 31.7 0 15.5 0.23 0.64
SCEN1 2015 2035 47.5 21.4 0 7.9 0.11 0.78
SCEN2 2015 2035 47.5 21.4 0 5.9 0.09 0.87

The scenarios of this thesis are based on installed capacities of wind power and

photovoltaic in 2035 that differ greatly from previous studies (Table 8). This can partly

be attributed to differences in the year of publication and the years used as reference

and for the future. For example, dena (2012) projected a larger future expansion of solar

photovoltaic than wind power, whereas the scenario used on this thesis expects a larger

future expansion of wind power (Table 8).

In previous studies, the costs per additional Watt of installed generation capacity of

solar photovoltaic and onshore wind power plants were about 0.14 EUR / W (dena,

2012) and 0.23 EUR / W (BMWi, 2014). In the scenarios of this thesis, the costs

are estimated at 0.11 EUR / W (worst-case scenario) and 0.09 EUR / W (curtailment

scenario). The worst-case scenario is more similar to the scenarios examined in the two

previous studies than the curtailment scenario. Furthermore, the methodology of this

thesis is more similar to dena (2012) than to BMWi (2014). For these two reasons, in the

following the deviations of the worst-case scenario from dena (2012) are discussed.

There are several explanations why the total costs per Watt of installed generation

capacity in this thesis might be lower than the total costs per Watt in dena (2012). For

example, the scenario of dena (2012) is based on the assumption that solar photovoltaic

expands more strongly than onshore wind. If the costs of network expansion tend to
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be higher for one additional Watt of solar photovoltaic installed capacity than for one

additional Watt of onshore wind installed capacity, this can explain why the costs are

lower in the worst-case scenario. One possible explanation is that most photovoltaic

power plants are connected to networks on the low-voltage level. This means that one

additional Watt of installed capacity can result in a demand for network expansion

on both the low-voltage and the medium-voltage level if it causes an exceedance of

thermal limits on both levels.

Furthermore, the total costs per Watt may be lower in the scenarios of this thesis than

in dena (2012) because some real networks are only partly represented in the dataset of

synthetic networks. This concerns network districts with aggregated load areas. These

load areas do not contain any network on the low-voltage network. They represent

urban areas and it is therefore assumed that the costs of network expansion would be

relatively low there (Section 3.1). However, it is not clear how realistic this assumption

is. Table 8 shows that the networks expansion on the low-voltage level has a generally

lower share for the scenarios of this thesis than in dena (2012). This can partly be

attributed to the larger expansion of photovoltaic in dena (2012) than in the scenarios

of this thesis. However, it may also indicate that the costs of expanding networks on

the low-voltage levels are underestimated in this thesis because aggregated load areas

do not contain low-voltage networks.

The focus of this thesis is on associations between network attributes and the costs of

network expansion. The associations are discussed in Chapter 4. They are then used

to define the cluster models at the end of Section 6.2. Overall, the results in Chapter

6 support some of the conjectured associations more strongly than others. Even if the

total costs of network expansion agree well with previous results based on samples of

real networks, the associations between network attributes and expansion costs that

are reflected in the results of this thesis are not necessarily realistic. These associations

have not been analysed before. Also dena (2012) and BMWi (2014) do not examine

these associations. The accuracy of the associations can therefore only be discussed

qualitatively based on the strengths and weaknesses of the dataset that includes both

network attributes and costs of network expansion. Some of the weaknesses of the

dataset of synthetic networks are discussed in the following.

The synthetic networks were built from open-access geographical information about
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demand and supply of electricity in Germany. This means that systematic errors in the

geographical information also affect the representativeness of the distribution networks

(Hülk et al., 2017).

Furthermore, the networks were generated with an algorithm based on principles of

distribution network operation. Many of these principles, such as the n-1 criterion,

were taken from laws and regulation (Amme et al., 2017). However, not all options

to implement these principles are considered by the algorithm that constructs the

synthetic networks. For example, the n-1 criterion can sometimes be met by

interconnections between neighbouring network districts on the MV level in case of an

equipment failure. This option was not considered in the construction of the dataset.

The algorithm constructs the distribution networks based on geographical data on

electricity supply and demand. This means that some additional factors that lead

to variation among distribution networks in Germany are not taken into account.

Examples are the historical evolution of typical network topologies or regional

differences in how principles of network planning and development are implemented.

These differences are not represented in the dataset.

Finally, the methods for network expansion were derived based on published literature

(Section 3.4). This literature takes laws and regulation in Germany into account.

However, one must assume that there are more options and criteria considered in

practice than by the algorithm. If these options are correlated with network attributes,

the actual costs of network expansion may systematically deviate from the costs of the

dataset.

7.2 Network attributes

In this thesis, a list of possible network attributes was derived from theoretical

considerations. For each of these attributes, the average effect in terms of the change

in performance of a cluster model that excludes and then includes that attribute was

examined. Based on the results, the most important network attributes were derived.

The top six network attributes are: WIND-2035, WIND-2015, IMAX-MV, SOLAR-2035,

LENGTH-MV, and SOLAR-2015 (Section 6.1).

To the knowledge of the author this is the first examination which network attributes
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should be included in a cluster analysis in order to identify electricity networks that are

representative for an estimation of total costs of distribution network expansion. The

work that comes closest to this thesis is dena (2012). In that study, each network district

is first categorised as urban or rural based on population density. These categories are

distinguished because the sample of real networks is not representative with respect to

population density. Then, within each category a cluster model with four attributes

is applied: WIND-2035, WIND-2015, SOLAR-2035, and SOLAR-2035. The relative

importance of these or alternative attributes is however not addressed.

In some previous publications, authors have proposed attributes that can be used

to characterise and distinguish electricity distribution networks. These authors did

however not account for the association between network attributes and expansion

costs. For example, Kerber (2010) classified low-voltage networks in Germany based on

population density of their local administrative district. In his classification, network

districts are classified as either urban, semi-urban or rural. Based on a sample of

real low-voltage networks, Kerber (2010) shows how attributes such as the capacity

of the transformer station or the distance between two consumers differ systematically

between these three categories.

Gust (2014) examined which network attributes can be used to distinguish distribution

networks in a sample of real networks from Switzerland. These attributes are however

specific to low-voltage networks and, for example, do not include installed capacity of

wind power plants. Furthermore, the examination is not specific to the estimation of

expansion costs. In consequence, many of the attributes in Gust (2014) can either not

be computed from the synthetic networks or do not fit into the theoretical framework

developed in Chapter 4. Nevertheless, some of the attributes resemble attributes used

in this thesis. For example, Gust (2014) includes the capacity of transformer stations,

peak load, installed capacity of solar photovoltaic plants, impedance of lines and cables

and their thermal capacity.

Walker et al. (2014) identify representative low-voltage networks for the area of one

distribution network operator in Germany. To this aim, they conduct a cluster

analysis. Before the cluster analysis, Walker et al. (2014) apply a factor analysis to

identify which attributes are relatively strongly correlated. Finally they propose five

attributes for the cluster analysis: total length of lines and cables on the LV level, the
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capacity of the transformer station, the impedance, and the installed capacity of solar

photovoltaic plants. Furthermore, they propose the average age of the population as

a socio-demographic variable. These attributes resemble attributes used in this thesis.

However, the analysis of is also not Walker et al. (2014) specific to the estimation of

expansion costs.

Before a cluster analysis one can also conduct a principal component analysis based on

potential attributes and then include some of these components in the cluster model

(Hastie et al., 2009). In this thesis, it was decided to include network attributes as they

are defined in Chapter 4. The main reason is that the results of the cluster models in

Chapter 6 are easier to interpret for these original attributes. Furthermore, the results

are easier to reproduce and the cluster models are easier to adopt in future applications.

The development of a theoretical framework in Chapter 4 had the consequence that

finally only 14 network attributes were examined in Chapter 6. In general, a much

larger number of attributes could have been examined. For example, one could

not only include the mean value of the impedance of all network paths to terminal

nodes but also its maximum and minimum value and potentially some additional

percentiles. Furthermore, one could include population density and the area of a

network district. Especially the regression tree estimation would allow for a larger

number of network attribute since the tree simply ignores less important attributes.

However, the theoretical framework and the focus on attributes that are included

in that framework allowed the author to interpret the cluster models based on the

theoretical considerations in Chapter 4. This was done, for example, in the more

detailed examination of alternative cluster models in Section 6.5.

For the examination of further scenarios of network expansion, the theoretical

framework can integrate additional network attributes. For example, if options for

storing energy were included in the networks and in the power flow simulation, one

could add an attribute describing the use or the capacity of these storages in a network

district as an attribute determining the supply of hosting capacity.
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7.3 Cluster estimation methods

In this thesis two alternative cluster estimation methods were considered and

compared, K-Mean and regression trees (Chapter 6). For these two methods, the error

from aggregation was quantified. This was made possible by the dataset of synthetic

networks. Figure 29 shows the average relative deviation of estimated total costs from

calculated total costs for both K-Mean and regression tree estimation. For both costs

scenarios, the relative deviation is on average lower for regression tree than for K-Mean

estimation.
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Figure 29: Relative deviation of estimated total costs from total costs (R in Equation 5.12) for
different number of clusters K and for the (a) worst-case scenario and (b) curtailment
scenario. Lines indicate arithmetic mean for the 28 cluster models in Section 6.4,
shaded area ranges from 25 percentile to 75 percentile of these models. The black
dashed line indicates the mean relative deviation for random samples of size K (see
Figure 20). K-Mean (KM) and regression tree estimation (RT).

The regression trees were fitted to the costs of network expansion of the worst-case

scenario. For this scenario, one would therefore expect that regression trees perform

better than K-Mean estimation. Whether the fitted trees perform better for an

alternative scenario is determined by the association between the costs of the two

scenarios. Figure 31 shows the relationship between the costs of the worst-case scenario

and the curtailment scenario. Overall, the costs are relatively similar with a correlation

coefficient of 0.97 and a root-mean-squared-error (RMSE) of 1. As expected from the

construction of the scenarios (Section 3.4), the costs tend to be lower for the curtailment

scenario. Despite the overall good agreement for some networks costs are different by

a factor of two or more.
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Figure 30: Scatter plot of costs of network expansion of worst-case scenario (SCEN1) and
curtailment scenario (SCEN2). Pearson correlation coefficient ρ = 0.97. a = −0.23
and b = 0.85 denote intercept and coefficient of linear regression model, respectively.

The overall good agreement between the costs of the two scenarios can explain

why regression trees performed generally better than K-Mean clustering also for the

curtailment scenario. For a third scenario, this relative advantage could however

change depending on how well the costs of the two scenarios are related. For example,

for a scenario that includes battery storage, the costs could be relatively different.

Whether regression trees that are fitted to the worst-case scenario still produce clusters

that are better suited for an estimation of total costs than K-Mean estimation cannot be

inferred from the results of this thesis.

For some applications, it may be desired that clusters of distribution networks have a

certain minimum size. The regression trees used in Chapter 6 do not constrain the size

of clusters. While some clusters include more than 1000 networks, other clusters consist

of only one network (not shown). Figure 31 shows the relative deviation for regression

trees of which each cluster consists of at least 10 networks. For the worst-case scenario,

this additional constraint increases the relative deviation of estimated costs from actual

costs. For the curtailment scenario, however, for k < 300 and especially for low values

of K, the constraint tends to improve the performance of cluster models.

The results in Figure 31 illustrate how the minimum size of clusters can change the

performance of regression tree estimation of clusters. There are further parameters

of tree such as the maximum size of a cluster or the depth of the tree which could

also be examined. Furthermore, one could examine how pruning of trees affects
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Figure 31: Relative deviation of estimated total costs from total costs (R in Equation 5.12)
for different number of clusters K and for the (a) worst-case scenario and (b)
curtailment scenario. Lines indicate arithmetic mean for a subset of the 28 cluster
models in Section 6.4, shaded area ranges from 25 percentile to 75 percentile of these
models. The black dashed line indicates the mean relative deviation for random
samples of size K (see Figure 20). Regression tree estimation (RT) with size of leafs
unconstrained (green color) and size of leafs nk > 10 (red color).

their performance for the scenario of costs to which they are fitted and for alternative

scenarios. Due to time and resource constraints of this thesis, this examination remains

for future research.

It is important to note at this point that the association between costs of the scenario to

which the trees are fitted and the scenarios to which they are finally applied is generally

not known. This is because for the scenarios to which the trees are finally applied costs

are only computed for few representative networks. This is the central idea behind

the use of clusters to estimate total costs, the performance of which is examined in this

thesis. This means that the relative deviation of estimated from calculated total costs for

the two scenario shown here may be considered as only one of several criteria for the

choice of a cluster estimation method. For a scenario more different from the worst-case

scenario than the curtailment scenario, K-Mean may be preferred for example because

one may consider it to be a less scenario-specific and therefore more robust cluster

estimation method. More insights into the robustness of the two estimation methods

could be gained by examining a larger set of possible cost scenarios in the same way as

the two scenarios were examined here.
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7.4 Cluster models

One of the main objectives of the analysis was to identify those cluster models that

yield the lowest within-cluster dispersion of costs and the lowest relative deviation of

estimated total costs from calculated total costs. This was also motivated by the fact

that all previous studies adopted the cluster model proposed by dena (2012) although

the performance of this model had not yet been assessed.

The performance of the cluster model DENA relative to the average performance of the

other 27 cluster models selected for the detailed analysis in Section 6.3 and Section 6.4

is shown in Figure 32. For 20 ≤ K < 200 the model DENA performs better than the

average of the alternative models. An exception is K = 50 for which the model DENA

performs worse than the average for regression tree estimation. Overall, the model

DENA tends to perform better than the average of the alternative models (Figure 32).
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Figure 32: Relative deviation of estimated total costs from total costs (R in Equation 5.12) for
different number of clusters K and for the (a) worst-case scenario and (b) curtailment
scenario. Lines indicate arithmetic mean for the 27 cluster models in Section 6.4
excluding the model DENA (black colour) and for the cluster model DENA (red
colour). Light grey area ranges from minimum to maximum value, dark grey area
ranges from 25 percentile to 75 percentile of the 27 models. The black dashed line
indicates the mean relative deviation for random samples of size K (see Figure 20).
K-Mean (KM) estimation.

If one compares the model DENA with individual cluster models, some other models

perform better for K > 150 (WWT) and for K < 100 (WS35) (Section 6.3 and Section

6.4). Furthermore, the detailed analysis revealed that for relatively small values of K it
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is better to include WIND-2035 and SOLAR-2035 rather than only one technology. At

the same time, for relatively large values of K it is better to include WIND-2035 and

WIND-2015. Furthermore, the results indicated that it is better to include relatively

few attributes describing the electricity network itself. For example, the cluster model

WWT that performed better than most other cluster models in this thesis included only

network attributes describing the occurrence of an exceedance of thermal capacity of a

line, IMAX-MV and NLINES-MV (Section 6.3).

This relative performance of cluster models is subject to the same uncertainties of the

dataset as the relative importance of network attributes. These uncertainties were

discussed in Section 7.1. Furthermore, some of the conclusions above are sensitive to

the assumed locations of future onshore wind and solar photovoltaic power plants.

The choice of their location was described in Section 3.2. If the algorithm that

distributes installed capacity to network districts and chooses their location within

these districts was different, also the relative performance of cluster models can be

different. For example, the correlation coefficient between additional onshore wind

(∆WIND = WIND-2035 - WIND-2015) and additional solar photovoltaic installed

capacity (∆SOLAR = SOLAR-2035 - SOLAR-2015) across network districts in the

dataset is 0.25. If this correlation was even lower, network attributes related to solar

photovoltaic plants (SOLAR-2035, IMAX-LV) could be more important. This is because

the higher this correlation, the less important it is to include this attributes if attributes

related to wind power plants are already included.

The same holds true for the correlation between installed generation capacity of one

technology in 2015 and 2035. The correlation coefficient between SOLAR-2015 and

SOLAR-2035 is 0.97 in the dataset. For WIND-2015 and WIND-2035, the correlation

coefficient is 0.88. If it was lower, the attributes describing the installed capacity in 2015

(WIND-2015, SOLAR-2015) would be relatively more important.
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The German power system is undergoing a fundamental transformation substituting

electricity generated from fossil fuels with electricity from renewable resources. This

transformation - the Energiewende - poses challenges also for the German electricity

distribution system. If the installed capacity of onshore wind and solar photovoltaic

power plants increases as projected, the total costs of distribution network expansion

by the year 2035 are estimated to be up to 40 billion EUR (dena, 2012).

These and other estimates of the costs of expanding distribution networks at the

national (BMWi, 2014) and sub-national level (Ackermann et al., 2014; Rehtanz

et al., 2017) were derived from samples of relatively few networks in Germany and

aggregated to total costs using a cluster analysis. This methodology was developed and

applied for the first time by dena (2012) and has since then be adopted by subsequent

authors. Whether the methodology can produce accurate results and whether it is

better suited than alternative methods has so far however not been examined.

In this thesis, a dataset of synthetic networks was used to examine different cluster

models and cluster estimation methods as alternatives to the methodology developed

and first applied in dena (2012). To this aim, first a theoretical framework was

developed. This framework was used to define 14 network attributes. Second, each

of these attributes was examined regarding its effect if it is included in an existing

cluster model. Third, the cluster models that yield the lowest within-cluster dispersion

of expansion costs were identified. Fourth, the previous two results were used to

define 57 cluster models and compare their performance for two alternative scenarios of

network expansion. The performance was assessed both in terms of the within-cluster

dispersion of costs and the relative deviation of estimated total costs from calculated

total costs. Finally, some of the cluster models were analysed in more detail including

the geographic occurrence of clusters.

The six network attributes that reduce the within-cluster dispersion of costs of an

existing cluster model the strongest were in this order: WIND-2035, WIND-2015,
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IMAX-MV, SOLAR-2035, LENGTH-MV, SOLAR-2015 (see Table 2 for their definition).

The results show that these attributes are also most frequently included in those cluster

models that feature the lowest within-cluster dispersion of expansion costs.

Overall, the results show that for the best cluster models, which include the model of

dena (2012), the relative deviation of estimated total costs from calculated total costs

decreases with the number of clusters K. This number was varied in fixed intervals

from 5 to 300, whereby the total number of networks in the dataset is 2928. The relative

deviation decreased relatively strongly for K ≤ 50 and less strongly for K > 50. For

this reason, K = 50 can represent a good choice when searching for a balance between

the accuracy of the model and the resources required for computations. For K ≥ 50

the relative deviation of estimated total costs was on average less than 10% for the best

28 cluster models. These 28 cluster models feature a smaller relative deviation than the

average deviation of random samples of networks of size K.

Furthermore, for K ≤ 100 cluster models that include future installed generation

capacity of onshore wind and solar photovoltaic power plants as network attributes

results in the lowest relative deviation. For K > 150, the cluster model WWT, which

includes the installed generation capacity of onshore wind in 2015 and in 2035, as well

as attributes that describe thermal limits of the network, performed best. The model

DENA, which includes the installed generation capacity of onshore wind and solar

photovoltaic power plants in 2015 and in 2035, featured a relative deviation that was

lower than the average of the best 28 models for K < 200 but not lower than the best of

these models.

For all results, two scenarios, one worst-case scenario and one scenario with

curtailment (see Section 3.4 for their definition) were examined. Furthermore, K-Mean

and regression trees were compared as two alternative cluster estimation methods.

Regression trees were fitted to the costs of the worst-case scenario and applied to the

scenario with curtailment. Overall, the relative deviation of estimated total costs from

calculated total costs was lower for regression tree than for K-Mean estimation also for

the curtailment scenario.

In sum, the results indicate that the methodology used by previous studies can produce

good results: the cluster model that was used previously performs better than the

average of the alternative cluster models proposed in this thesis. At the same time,
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the results indicate two ways by which the performance of the methodology can be

improved. The first is the choice of the cluster model. For all values of K, at least one of

the alternative models performed better. The second way to improve the performance

of the methodology is the use of regression trees rather than K-Mean to estimate

clusters. For the scenarios of this thesis, regression trees tended to outperform K-Mean

with respect to both metrics that were developed for the evaluation of cluster models.

The use of a dataset of synthetic electricity networks allowed the author the analysis in

this thesis. At the same time, it introduced additional uncertainty about the accuracy

of the costs of network expansion and the association between network attributes and

these costs. The construction of the dataset was in detail described in Chapter 3. The

dataset has also been successfully validated against statistics of the total length of lines

and cables in Germany (Amme et al., 2017). In order to examine the costs that were

computed for the dataset, the total costs were compared to the total costs in previous

studies. Overall, the total costs per additional installed generation capacity are 0.11

EUR / W and hence close to the result of dena (2012) (0.14 EUR / W), especially if

compared to the alternative estimate of total costs in BMWi (2014) (0.23 EUR / W, Table

8).

The results of this thesis and their discussion in Chapter 7 point to several avenues for

future research. This includes a more detailed validation of the dataset of synthetic

networks. For this purpose, statistics published by distribution network operators

due to the German energy law could be used in order to compare statistics not

only on the national level but also on the level of network districts. Furthermore,

the performance of regression tree estimation relative to K-Mean estimation requires

further examination. For this, the effect of additional parameters of regression trees

could be analysed, such as the size of clusters and the depth of the tree. Furthermore,

additional scenarios of costs of network expansion could be analysed in order to

examine the robustness of the good performance of trees if a scenario differs more

strongly from the worst-case scenario to which the tree has been fitted.

69



Acknowledgements

This thesis would not have been successful without the support from my supervisor,

my colleagues at RLI, my family, my friends and my partner.

I would like to thank Prof. Dr. Franz Hubert for granting me the freedom to

choose and develop the topic of this thesis and for the fruitful feedback to three

seminar presentations. Furthermore I am very thankful to my colleagues at the

Reiner-Lemoine-Institut (RLI) Berlin for offering me this topic and for guiding me

from the start of this thesis down to the finish line. My special thanks goes to Guido

Plessmann for supporting me in many ways. Furthermore, I would like to thank Birgit

and Jonathan for sharing their expertise with me and for providing valuable feedback.

I would also like to thank my course mates with whom I collaborated in seminars and

lectures and spent time inside and outside the classroom. You provided invaluable

support and motivation throughout my Master’s studies.

Finally, I would like to thank my close friends, my family and my partner Tania.

Without your support, I would not have had the optimism and endurance for finishing

this thesis.

70



Appendix

Figure 33: Regression tree for the cluster model DENA with K = 10.

Figure 34: Regression tree for the cluster model WWT with K = 10.

71



(a)

IM
A

X
-L

V

IM
A

X
-M

V

IM
PED

A
N

C
E

LEN
G

TH
-L

V

LEN
G

TH
-M

V
LO

A
D

N
LIN

ES-
LV

N
LIN

ES-
M

V

SO
LA

R
-2

01
5

SO
LA

R
-2

03
5

TR
A

FO
-L

V

TR
A

FO
-M

V

W
IN

D
-2

01
5

W
IN

D
-2

03
5

WS35S
WS35L

WS35UT
WS35T
WS35U
WS35P
WS15II

WS15
WS35II

WS35
WSII

DENA
ALL14

4
3
7
6
5
3
4
2
4
2
6
4

14

n

(b)

IM
A

X
-L

V

IM
A

X
-M

V

IM
PED

A
N

C
E

LEN
G

TH
-L

V

LEN
G

TH
-M

V
LO

A
D

N
LIN

ES-
LV

N
LIN

ES-
M

V

SO
LA

R
-2

01
5

SO
LA

R
-2

03
5

TR
A

FO
-L

V

TR
A

FO
-M

V

W
IN

D
-2

01
5

W
IN

D
-2

03
5

W35PUTL
W35UTL

W35UT
W35TL

W35T
W35UL

W35U
W35PS

W35S
W35P
W35II

WW

6
5
4
4
3
4
3
3
2
2
3
2

n

(c)

IM
A

X
-L

V

IM
A

X
-M

V

IM
PED

A
N

C
E

LEN
G

TH
-L

V

LEN
G

TH
-M

V
LO

A
D

N
LIN

ES-
LV

N
LIN

ES-
M

V

SO
LA

R
-2

01
5

SO
LA

R
-2

03
5

TR
A

FO
-L

V

TR
A

FO
-M

V

W
IN

D
-2

01
5

W
IN

D
-2

03
5

S35PUTL
S35UTL

S35UT
S35TL

S35T
S35UL

S35U
S35PS

S35S
S35P
S35II

SS

9
8
6
7
5
6
4
4
3
2
3
2

n

(d)

IM
A

X
-L

V

IM
A

X
-M

V

IM
PED

A
N

C
E

LEN
G

TH
-L

V

LEN
G

TH
-M

V
LO

A
D

N
LIN

ES-
LV

N
LIN

ES-
M

V

SO
LA

R
-2

01
5

SO
LA

R
-2

03
5

TR
A

FO
-L

V

TR
A

FO
-M

V

W
IN

D
-2

01
5

W
IN

D
-2

03
5

WWPUTL
WWUTL

WWUT
WWTL

WWT
WWUL

WWU
WWPS

WWS
WWP

7
6
5
5
4
5
4
4
3
3
n

(e)

IM
A

X
-L

V

IM
A

X
-M

V

IM
PED

A
N

C
E

LEN
G

TH
-L

V

LEN
G

TH
-M

V
LO

A
D

N
LIN

ES-
LV

N
LIN

ES-
M

V

SO
LA

R
-2

01
5

SO
LA

R
-2

03
5

TR
A

FO
-L

V

TR
A

FO
-M

V

W
IN

D
-2

01
5

W
IN

D
-2

03
5

SSPUTL
SSUTL

SSUT
SSTL

SST
SSUL

SSU
SSPS

SSS
SSP

10
9
7
8
6
7
5
5
4
3
n

Figure 35: Cluster models for further analysis, e.g. in Section 6.3 and Section 6.4, and the labels
used to refer to them throughout this thesis.
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