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MOEA variants. For comparison, a bi-objective test problem with
SMOOTH's characteristics was formulated. It represents an
optimization problem in which 12 design parameters of a set of
photovoltaic generators supplying a predefined load are to be
: o : optimized in such a way as to both minimize levelized cost of energy
'S_to develqp an approach for optimi.zmg a rriicro (LCOE) and maximize the system’s self-sufficiency ratio (SSR), while
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EAs for hybrid energy systems optimization were In the following the algorithm variant identified as having superior

capable of dealing with all of SMOOTH’S iRl ENI0ON Lo =2
characteristics simultaneously it was necessary to

compose a new multi-objective evolutionary
algorithm (MOEA).

(e.g. photovoltaic, small scale wind turbines) as
well as electric storage units and consumption
loads (e.g. electric vehicles). An integral part of
establishing SMOOTH as an effective planning tool
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Figure 2: Evolution of the solution population, While in the first generation (left) the population mainly consists of infeasible solutions
scattered across the objective space, the 30! generation (right) is completely feasible and has converged and lined up to form the pareto
front. SMOOTH-MOEA ultimately generates the widest and most diverse pareto front with highest robustness of all variants while yielding
comparable feasibility. The test problem demonstrates how multi-objective algorithms offer a better picture of optimality than any single-
objective approach would have for either of the two objectives. For example, while the optimal solution for the maximization of SSR
(minimization of 1-SSR) is close to 90%, it can be seen that a slight depreciation from this optimum down to an SSR of about 85% can
reduce the LCOE by more than 40% (0.255 €/kWh to 0.150 €/kWh). Likewise, a slight increase of the minimum LCOE value permits a
comparably large increase of the SSR.
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Figure 4: Pareto front of simplified PV problem colored according to parameters, Both azimuth and inclination angle are constant for
all solutions (a = 9° and y = 35°, respectively). The left graph demonstrates how a jump in the pareto curve correlates to a change in
semiconductor quality. Low SSRs and low LCOE correlate with amorphous silicon technology. In order to increase SSR the PV
generator’s aperture is raised which increases LCOE at the same time (right). Once the maximum aperture of 10 m? is reached, the
generator’'s peak power must be increased by switching to a technology of higher efficiency (here monocrystalline silicon), which causes a
skip in the pareto front. SMOOTH-MOEA demonstrated effective and reliable convergence towards this sensible solution.
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Figure 1: Optimization problem characterization; The micro grid
model in SMOOTH can be characterized as a mixed-integer, non-
linear, multi-modal, high-dimensional, and non-separable optimization
problem with multiple objectives and various equality and inequality
constraints.
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Figure 3: Speed of convergence and Parallelization, SMOOTH-
MOEA'’s selection scheme allows to parallelize optimization problem
evaluations and thus the highest speed of convergence. Testing on
eight workers compared sequential to parallel computation and
showed that SMOOTH-MOEA achieves a speedup of around 7
which denotes a parallel efficiency of over 80%.

Conclusion

The algorithm variant identified as having superior
performance, called SMOOTH-MOEA, demon-
strated effective and reliable optimization behavior
on the test problem. It converged the solution to a
sensible tradeoff curve between the objectives of
minimized LCOE and maximized SSR while
satisfying the constraints 98% of the time. Due to
its selection subroutine, SMOOTH-MOEA was
found to be highly parallelizable, distributing the
optimization function evaluations among separate
workers with a parallel efficiency of over 80%. It

can be expected that SMOOTH-MOEA is a suitable
optimization algorithm for any other micro grid
model exhibiting similar characteristics as
SMOOTH. Its parallelizability allows reducing
optimization time by a factor at the order of the
number of available workers.
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