Wine to Energy
6. Dezember 2019Intelligente Vernetzung von Elektromobilität und Stromnetzen – Forschungsprojekt gestartet
9. Dezember 2019Multiperiod Optimal Power Flow Problem in Distribution System Planning (Pedersen 2019)
Jaap Pedersen
Masterarbeit von Jaap Pedersen, angefertigt im Rahmen seiner Tätigkeit als studentischer Mitarbeiter im open_BEA-Projekt.
Abstract
Growing demand, distributed generation, such as renewable energy sources (RES), and the increasing role of storage systems to mitigate the volatility of RES on a medium voltage level, push existing distribution grids to their limits. Therefore, necessary network expansion needs to be evaluated to guarantee a safe and reliable electricity supply in the future taking these challenges into account. This problem is formulated as an optimal power ow (OPF) problem which combines network expansion, volatile generation and storage systems, minimizing network expansion and generation costs. As storage systems introduce a temporal coupling into the system, a multiperiod OPF problem is needed and analysed in this thesis. To reduce complexity, the network expansion problem is represented in a continuous nonlinear programming formulation by using fundamental properties of electrical engeneering. This formulation is validated succesfully against a common mixed integer programming approach on a 30 and 57 bus network with respect to solution and computing time. As the OPF problem is, in general, a nonconvex, nonlinear problem and, thus, hard to solve, convex relaxations of the power ow equations have gained increasing interest. Sufficient conditions are represented which guarantee exactness of a second-order cone (SOC) relaxation of an operational OPF in radial networks. In this thesis, these conditions are enhanced for the network expansion planning problem. Additionally, nonconvexities introduced by the choice of network expansion variables are relaxed by using McCormick envelopes. These relaxations are then applied on the multiperiod OPF and compared to the original problem on a 30 and a 57 bus network. In particular, the computational time is decreased by an order up to 102 by the SOC relaxation while it provides either an exact solution or a sufficient lower bound on the original problem. Finally, a sensitivity study is performed on weights of network expansion costs showing strong dependency of both the solution of performed expansion and solution time on the chosen weights.
Growing demand, distributed generation, such as renewable energy sources (RES), and the increasing role of storage systems to mitigate the volatility of RES on a medium voltage level, push existing distribution grids to their limits. Therefore, necessary network expansion needs to be evaluated to guarantee a safe and reliable electricity supply in the future taking these challenges into account. This problem is formulated as an optimal power ow (OPF) problem which combines network expansion, volatile generation and storage systems, minimizing network expansion and generation costs. As storage systems introduce a temporal coupling into the system, a multiperiod OPF problem is needed and analysed in this thesis. To reduce complexity, the network expansion problem is represented in a continuous nonlinear programming formulation by using fundamental properties of electrical engeneering. This formulation is validated succesfully against a common mixed integer programming approach on a 30 and 57 bus network with respect to solution and computing time. As the OPF problem is, in general, a nonconvex, nonlinear problem and, thus, hard to solve, convex relaxations of the power ow equations have gained increasing interest. Sufficient conditions are represented which guarantee exactness of a second-order cone (SOC) relaxation of an operational OPF in radial networks. In this thesis, these conditions are enhanced for the network expansion planning problem. Additionally, nonconvexities introduced by the choice of network expansion variables are relaxed by using McCormick envelopes. These relaxations are then applied on the multiperiod OPF and compared to the original problem on a 30 and a 57 bus network. In particular, the computational time is decreased by an order up to 102 by the SOC relaxation while it provides either an exact solution or a sufficient lower bound on the original problem. Finally, a sensitivity study is performed on weights of network expansion costs showing strong dependency of both the solution of performed expansion and solution time on the chosen weights.